934 resultados para Hamster buccal mucosa
Resumo:
Interactions of mercury(II) with the microtubule network of cells may lead to genotoxicity. Complexation of mercury(II) with EDTA is currently being discussed for its employment in detoxification processes of polluted sites. This prompted us to re-evaluate the effects of such complexing agents on certain aspects of mercury toxicity, by examining the influences of mercury(II) complexes on tubulin assembly and kinesin-driven motility of microtubules. The genotoxic effects were studied using the micronucleus assay in V79 Chinese hamster fibroblasts. Mercury(II) complexes with EDTA and related chelators interfered dose-dependently with tubulin assembly and microtubule motility in vitro. The no-effect-concentration for assembly inhibition was 1 μM of complexed Hg(II), and for inhibition of motility it was 0.05 μM, respectively. These findings are supported on the genotoxicity level by the results of the micronucleus assay, with micronuclei being induced dose-dependently starting at concentrations of about 0.05 μM of complexed Hg(II). Generally, the no-effect-concentrations for complexed mercury(II) found in the cell-free systems and in cellular assays (including the micronucleus test) were identical with or similar to results for mercury tested in the absence of chelators. This indicates that mercury(II) has a much higher affinity to sulfhydryls of cytoskeletal proteins than to this type of complexing agents. Therefore, the suitability of EDTA and related compounds for remediation of environmental mercury contamination or for other detoxification purposes involving mercury has to be questioned.
Resumo:
Interactions of chemicals with the microtubular network of cells may lead to genotoxicity. Micronuclei (MN) might be caused by interaction of metals with tubulin and/or kinesin. The genotoxic effects of inorganic lead and mercury salts were studied using the MN assay and the CREST analysis in V79 Chinese hamster fibroblasts. Effects on the functional activity of motor protein systems were examined by measurement of tubulin assembly and kinesin-driven motility. Lead and mercury salts induced MN dose-dependently. The no-effect-concentration for MN induction was 1.1 μM PbCl2, 0.05 μM Pb(OAc)2 and 0.01 μM HgCl2. The in vitro results obtained for PbCl2 correspond to reported MN induction in workers occupationally exposed to lead, starting at 1.2 μM Hg(II) (Vaglenov et al., 2001, Environ. Health Perspect. 109, 295-298). The CREST Analysis indicate aneugenic effects of Pb(II) and aneugenic and additionally clastogenic effects of Hg(II). Lead (chloride, acetate, and nitrate) and mercury (chloride and nitrate) interfered dose-dependently with tubulin assembly in vitro. The no-effect-concentration for lead salts in this assay was 10 μM. Inhibition of tubulin assembly by mercury started at 2 μM. The gliding velocity of microtubules along immobilised kinesin molecules was affected by 25 μM Pb(NO3)2 and 0.1 μM HgCl2 in a dose-dependent manner. Our data support the hypothesis that lead and mercury genotoxicity may result, at least in part, via disturbance of chromosome segregation via interaction with cytoskeletal proteins.
Resumo:
Glutathione transferase (GST) GSTT1-1 is involved in the biotransformation of several chemicals widely used in industry, such as butadiene and dichloro methane DCM. The polymorphic hGSTT1-1 may well play a role in the development of kidney tumours after high and long-term occupational exposure against trichloroethylene. Although several studies have investigated the association of this polymorphism with malignant diseases little is known about its enzyme activity in potential extrahepatic target tissues. The known theta-specific substrates methyl chloride (MC) dichloromethane and 1,2-epoxy-3-(p-nitrophenoxy)propane (EPNP) were used to assay GSTT1-1 activity in liver and kidney of rats, mice, hamsters and humans differentiating the three phenotypes (non-conjugators, low conjugators, high conjugators) seen in humans. In addition GSTT1-1 activity towards MC and DCM was determined in human erythrocytes. No GSTT1-1 activity was found in any tissue of non-conjugators (NC). In all organs high conjugators (HC) showed twofold higher activity towards MC and DCM than low conjugators (LC). The activity in human samples towards EPNP was too close to the detection limit to differentiate between the three conjugator phenotypes. GSTT1-1 activity towards MC was two to seven-times higher in liver cytosol than in kidney cytosol. The relation for MC between species was identical in both organs: mouse > HC > rat > LC > hamster > NC. In rats, mice and hamsters GSTT1-1 activity in liver cytosol towards DCM was also two to seven-times higher than in the kidney cytosol. In humans this activity was twice as high in kidney cytosol than in liver cytosol. The relation between species was mouse > rat > HC > LC > hamster > NC for liver, but mouse > HC > LC/rat > hamster/NC for kidney cytosol. The importance to heed the specific environment at potential target sites in risk assessment is emphasized by these results.
Resumo:
Glutathione transferases (GSTs) catalyzing the conjugation of glutathione with electrophilic substrates are important enzymes in the metabolism of xenobiotics. Several isozymes exhibit polymorphisms in humans. The two deletion polymorphisms of hGSTM1 and hGSTT1 result in total loss of enzyme activity in homozygous null genotype (GSTM1*0 and GSTT1*0 respectively) individuals (Seidegård et al. 1988; Pemble et al. 1994). Individuals that are heterozygous for hGSTT1 show distinctly lower enzyme activities than individuals carrying two functional alleles of hGSTT1 (Wiebel et al. 1996). A similar effect is conceivable for the hGSTM1 polymorphism but has not been verified so far.
Resumo:
Genital tract carriage of group B streptococcus (GBS) is prevalent among adult women; however, the dynamics of chronic GBS genital tract carriage, including how GBS persists in this immunologically active host niche long term, are not well defined. To our knowledge, in this study, we report the first animal model of chronic GBS genital tract colonization using female mice synchronized into estrus by delivery of 17β-estradiol prior to intravaginal challenge with wild-type GBS 874391. Cervicovaginal swabs, which were used to measure bacterial persistence, showed that GBS colonized the vaginal mucosa of mice at high numbers (106–107 CFU/swab) for at least 90 d. Cellular and histological analyses showed that chronic GBS colonization of the murine genital tract caused significant lymphocyte and PMN cell infiltrates, which were localized to the vaginal mucosal surface. Long-term colonization was independent of regular hormone cycling. Immunological analyses of 23 soluble proteins related to chemotaxis and inflammation showed that the host response to GBS in the genital tract comprised markers of innate immune activation including cytokines such as GM-CSF and TNF-α. A nonhemolytic isogenic mutant of GBS 874391, Δcyle9, was impaired for colonization and was associated with amplified local PMN responses. Induction of DNA neutrophil extracellular traps, which was observed in GBS-infected human PMNs in vitro in a hemolysin-dependent manner, appeared to be part of this response. Overall, this study defines key infection dynamics in a novel murine model of chronic GBS genital tract colonization and establishes previously unknown cellular and soluble defense responses to GBS in the female genital tract.
Resumo:
The brain is well protected against microbial invasion by cellular barriers, such as the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB). In addition, cells within the central nervous system (CNS) are capable of producing an immune response against invading pathogens. Nonetheless, a range of pathogenic microbes make their way to the CNS, and the resulting infections can cause significant morbidity and mortality. Bacteria, amoebae, fungi, and viruses are capable of CNS invasion, with the latter using axonal transport as a common route of infection. In this review, we compare the mechanisms by which bacterial pathogens reach the CNS and infect the brain. In particular, we focus on recent data regarding mechanisms of bacterial translocation from the nasal mucosa to the brain, which represents a little explored pathway of bacterial invasion but has been proposed as being particularly important in explaining how infection with Burkholderia pseudomallei can result in melioidosis encephalomyelitis.
Resumo:
Anti-cancer drug loaded-nanoparticles (NPs) or encapsulation of NPs in colon-targeted delivery systems shows potential for increasing the local drug concentration in the colon leading to improved treatment of colorectal cancer. To investigate the potential of the NP-based strategies for colon-specific delivery, two formulations, free Eudragit® NPs and enteric-coated NP-loaded chitosan–hypromellose microcapsules (MCs) were fluorescently-labelled and their tissue distribution in mice after oral administration was monitored by multispectral small animal imaging. The free NPs showed a shorter transit time throughout the mouse digestive tract than the MCs, with extensive excretion of NPs in faeces at 5 h. Conversely, the MCs showed complete NP release in the lower region of the mouse small intestine at 8 h post-administration. Overall, the encapsulation of NPs in MCs resulted in a higher colonic NP intensity from 8 h to 24 h post-administration compared to the free NPs, due to a NP ‘guarding’ effect of MCs during their transit along mouse gastrointestinal tract which decreased NP excretion in faeces. These imaging data revealed that this widely-utilised colon-targeting MC formulation lacked site-precision for releasing its NP load in the colon, but the increased residence time of the NPs in the lower gastrointestinal tract suggests that it is still useful for localised release of chemotherapeutics, compared to NP administration alone. In addition, both formulations resided in the stomach of mice at considerable concentrations over 24 h. Thus, adhesion of NP- or MC-based oral delivery systems to gastric mucosa may be problematic for colon-specific delivery of the cargo to the colon and should be carefully investigated for a full evaluation of particulate delivery systems.
Resumo:
Objective. To assess the genetic association between secretor status and ankylosing spondylitis (AS). Methods. A restriction digest method for determining secretor status was developed; 166 patients with AS and 216 healthy British white controls were typed for secretor status using this method. Results. The frequency of nonsecretors among patients with AS (47/166, 28%) was not significantly different from controls (72/216, 33%). Conclusion. Secretor status does not influence susceptibility to AS.
Resumo:
Automatic-dishwasher detergent is a common household substance which is extremely corrosive and potentially fatal if ingested. In this report, we discuss the implications of the ingestion of automatic-dishwasher detergent in 18 children over a three-year period. Ten of the 18 children gained access to the automatic-dishwasher detergent from the dishwasher on the completion of the washing-cycle, while the remainder ingested the detergent directly from the packet. There was a poor correlation between the presenting signs and symptoms and the subsequent endoscopic finding in the 14 children who underwent endoscopy.
Resumo:
Behçet's syndrome is very rare in children, especially those under 10 years of age. Clinical and radiological features are described in 4 children, including 2 under the age of 5 years, with the syndrome. As in other pediatric cases reported, the incomplete form of Behçet's syndrome was present in each case. All 4 patients had oral and genital mucosal effects, arthritis and gastrointestinal and dermatological manifestations. Ophthalmological symptoms occurred in only 1 patient. Radiologically, the 4 cases demonstrated the spectrum of gastrointestinal involvement, from minimal irregularity and thickening of the terminal ileum to gross irregularity and deformity of the terminal ileum and cecum. Because of the difficulty in differentiating Behçet's syndrome from other forms of inflammatory bowel disease it is suggested that in children with gastrointestinal involvement, 3 major criteria be present before the diagnosis of Behçet's syndrome is made.
Resumo:
Twelve nasal swabs were collected from yearling horses with respiratory distress and tested for equid herpesvirus 1 (EHV-1) and equid herpesvirus 4 (EHV-4) by real-time PCR targeting the glycoprotein B gene. All samples were negative for EHV-1; however, 3 were positive for EHV-4. When these samples were tested for EHV-2 and EHV-5 by PCR, all samples were negative for EHV-2 and 11 were positive for EHV-5. All three samples that were positive for EHV-4 were also positive for EHV-5. These three samples gave a limited CPE in ED cells reminiscent of EHV-4 CPE. EHV-4 CPE was obvious after 3 days and was characterised by syncytia. None of the samples produced cytopathic effect (CPE) on African green monkey kidney (Vero) cells or hamster kidney (BSR) cells. Four of the samples, which were positive in the EHV-5 PCR, produced CPE on rabbit kidney (RK13) cells and equine dermis (ED) cells. EHV-5 CPE on both cell lines was slow and was apparent after four 7-day passages. On RK13 cells, the CPE was characteristic of equid herpesvirus, with the formation of syncytia. However, in ED cells, the CPE was characterised by ring-shaped syncytia. For the first time, a case of equine respiratory disease involving dual infection with EHV-4 and EHV-5 has been reported in Queensland (Australia). This was shown by simultaneously isolating EHV-4 and EHV-5 from clinical samples. EHV5 was recovered from all samples except one, suggesting that EHV5 was more prevalent in young horses than EHV2.
Resumo:
Helicobacter pylori (H. pylori) infection is a major cause of chronic gastritis and peptic ulcer disease, and it is also designated as a class-I carcinogen for stomach cancer. The role of probiotics in the treatment of gastrointestinal infections is increasingly documented as an alternative or complement to antibiotics, with the potential to decrease the use of antibiotics or reduce their adverse effects. These studies were conducted to investigate the role of probiotics in the treatment of H. pylori infection. Various aspects included: an investigation of the effects of a probiotic combination consisting of Lactobacillus rhamnosus GG, L. rhamnosus LC705, Propionibacterium freudenreichii ssp. shermanii JS and Bifidobacterium breve Bb99 or B. lactis Bb12 as a supplementation to H. pylori eradication therapy, with special reference to tolerability, effectiveness, and microbiota alterations following the treatment; discovering the role of probiotics in vivo with H. pylori infected and uninfected patients, as well as with an in vitro model of H. pylori infection. The probiotic combination therapy was able to reduce significantly the total symptom score, which takes into account both the frequency and the severity of the adverse effects, during the eradication treatment. The supplementation did not improve the success of the eradication treatment significantly, though some difference was seen in the eradication percentages (91% vs. 79%). The quantities of predominant bacterial groups were altered significantly following the triple treatment. Probiotics slightly counteracted the effects of anti-H. pylori treatment, monitored as significantly less alterations in the total numbers of aerobes and lactobacilli/enterococci group bacteria. After probiotic intervention, L. rhamnosus GG adhered to a minority of the patients upper gastrointestinal mucosa, but all of the probiotics survived well through the gastrointestinal tract transit with and without antimicrobial treatment. Probiotic intervention decreased gastrin-17 levels in H. pylori infected patients and appeared to decrease the 13C-urea breath test values. In in vitro Caco-2 cell line experiments, probiotics inhibited H. pylori adhesion to intestinal epithelial cells. Both L. rhamnosus strains, P. freudenreichii ssp. shermanii JS and the combination inhibited the H. pylori-induced acute cell leakage. Simultaneously, both L.rhamnosus strains and the combination transiently improved the epithelial barrier function. The pro-inflammatory effects prevailed when the probiotics were used in combination. According to this series of studies, probiotic combination could have some potential in reducing adverse effects induced by H. pylori eradication treatment and beneficial effects on H. pylori infected subjects.
Pathophysiological factors of irritable bowel syndrome, and the effects of probiotic supplementation
Resumo:
Gastrointestinal symptoms and impaired quality of life caused by irritable bowel syndrome (IBS) affect up to 20% of the adult population worldwide. The exact aetiology and pathophysiology of IBS are incompletely understood. Clinical studies suggest that supplementation with certain probiotics may be beneficial in IBS, but there is not enough evidence to make general recommendations. The aim of this thesis was to investigate microbiota- and mucosa-associated pathophysiological factors of IBS, and to evaluate the long-term effects of multispecies probiotic supplementation on symptoms, quality of life, intestinal microbiota and systemic inflammatory markers in IBS. The intestinal microbiota composition in IBS patients and healthy control subjects was analysed by quantitative polymerase chain reaction (qPCR). Significantly lower counts for the Clostridium coccoides and the Bifidobacterium catenulatum groups were found in IBS compared to controls. Quantitative differences also appeared in subgroup analysis based on the predominant bowel habit: diarrhoea patients harboured significantly lower numbers of Lactobacillus spp. than the constipation-predominant patients, while higher counts for Veillonella spp. were detected in constipation-predominant patients compared to healthy controls. Analysis of mucosal biopsies by a metabolomic approach revealed multiple differences between patients and controls. The most prominent finding was an upregulation of specific lipid species, principally lysophosphatidylcholines and ceramides, in IBS. The effects of multispecies probiotic supplementation with Lactobacillus rhamnosus GG, Lactobacillus rhamnosus Lc705, Propionibacterium freudenreichii subsp. shermanii JS, and Bifidobacterium breve Bb99 or Bifidobacterium animalis subsp. lactis Bb12 was evaluated in two, randomised, double-blind, placebo-controlled trials. Compared to placebo, the probiotic supplementation significantly reduced the total symptoms of IBS. No effects on bowel habit were seen. Health-related quality of life (HRQOL) is reduced in patients with IBS in comparison with the Finnish population on the whole. The probiotic supplementation improved one IBS-specific domain of quality of life (bowel symptoms), whereas no other effects on HRQOL were seen. The probiotics had no major effects on the predominant microbiota as measured by qPCR, but a microarray-based analysis suggested that the probiotic consumption stabilised the microbiota. No effects on serum sensitive-CRP or cytokines were detected. In conclusion, alterations in the microbiota composition and in the mucosal metabolite profile are potential pathophysiological factors of IBS. Multispecies probiotic supplementation alleviates the gastrointestinal symptoms of IBS, and improves the bowel symptoms domain of HRQOL. Probiotic supplementation in IBS is associated with a stabilisation of microbiota, but it does not influence systemic inflammatory markers.
Resumo:
Congenital lactase deficiency (CLD) (MIM 223000) is a rare autosomal recessive gastrointestinal disorder characterized by watery diarrhea in infants fed with breast milk or other lactose-containing formulas. The CLD locus was previously assigned by linkage and linkage disequilibrium analyses on 2q21 in 19 Finnish families. In this study, the molecular background of this disorder is reported. The CLD locus was refined in 32 CLD patients in 24 families by using microsatellite and single nucleotide polymorphism (SNP) haplotypes. Mutation analyses were performed by direct sequencing. We identified 5 distinct mutations in the lactase (LCT) gene, encoding the enzyme that hydrolyzes lactose in the intestinal lumen. These findings facilitate genetic testing of CLD in clinical practice and enable genetic counseling. The present data also provide the basis for detailed characterization of the molecular pathogenesis of this disorder. Adult-type hypolactasia (MIM 223100) (lactase non-persistence, lactose intolerance) is an autosomal recessive gastrointestinal condition that is a result of a decline in the activity of lactase in the intestinal lumen after weaning. Adult-type hypolactasia is considered to be a normal phenomenon among mammals and symptoms are remarkably milder than experienced in CLD. Recently, a variant C/T-13910 was shown to associate with the adult-type hypolactasia trait, locating 13.9 kb upstream of the LCT gene. In this study, the functional significance of the C/T-13910 variant was determined by studying the LCT mRNA levels in intestinal biopsy samples in children and adults with different genotypes. RT-PCR followed by solid-phase minisequencing was applied to determine the relative expression levels of the LCT alleles using an informative SNP located in exon 1. In children, the C-13910 allele was observed to be downregulated after five years of age in parallel with lactase enzyme activity. The expression of the LCT mRNA in the intestinal mucosa in individuals with the T-13910 A-22018 alleles was 11.5 times higher than that found in individuals with the C-13910, G-22018 alleles. These findings suggest that the C/T-13910 associated with adult-type hypolactasia is associated with the transcriptional regulation of the LCT gene. The presence of the T-13910 A-22018 allele also showed significant elevation lactase activity. Galactose, the hydrolysing product of the milk sugar lactose, has been hypothesized to be poisonous to ovarian epithelial cells. Hence, consumption of dairy products and lactase persistence has been proposed to be a risk factor for ovarian carcinoma. To investigate whether lactase persistence is related to the risk of ovarian carcinoma the C/T-13910 genotype was determined in a cohort of 782 women with ovarian carcinoma 1331 individuals serving as controls. Lactase persistence did not associate significantly with the risk for ovarian carcinoma in the Finnish, in the Polish or in the Swedish populations. The findings do not support the hypothesis that lactase persistence increases the risk for ovarian carcinoma.
Resumo:
BACKGROUND Given moderately strong genetic contributions to variation in alcoholism and heaviness of drinking (50% to 60% heritability) with high correlation of genetic influences, we have conducted a quantitative trait genome-wide association study (GWAS) for phenotypes related to alcohol use and dependence. METHODS Diagnostic interview and blood/buccal samples were obtained from sibships ascertained through the Australian Twin Registry. Genome-wide single nucleotide polymorphism (SNP) genotyping was performed with 8754 individuals (2062 alcohol-dependent cases) selected for informativeness for alcohol use disorder and associated quantitative traits. Family-based association tests were performed for alcohol dependence, dependence factor score, and heaviness of drinking factor score, with confirmatory case-population control comparisons using an unassessed population control series of 3393 Australians with genome-wide SNP data. RESULTS No findings reached genome-wide significance (p = 8.4 x 10(-8) for this study), with lowest p value for primary phenotypes of 1.2 x 10(-7). Convergent findings for quantitative consumption and diagnostic and quantitative dependence measures suggest possible roles for a transmembrane protein gene (TMEM108) and for ANKS1A. The major finding, however, was small effect sizes estimated for individual SNPs, suggesting that hundreds of genetic variants make modest contributions (1/4% of variance or less) to alcohol dependence risk. CONCLUSIONS We conclude that: - 1) meta-analyses of consumption data may contribute usefully to gene discovery; - 2) translation of human alcoholism GWAS results to drug discovery or clinically useful prediction of risk will be challenging, and; - 3) through accumulation across studies, GWAS data may become valuable for improved genetic risk differentiation in research in biological psychiatry (e.g., prospective high-risk or resilience studies).