933 resultados para HYDROCARBON RADICALS
Resumo:
Aryl hydrocarbon receptor nuclear translocator (ARNT) is a transcription factor that binds to partners to mediate responses to environmental signals. To investigate its role in the innate immune system, floxed ARNT mice were bred with lysozyme M-Cre recombinase animals to generate lysozyme M-ARNT (LAR) mice with reduced ARNT expression. Myeloid cells of LAR mice had altered mRNA expression and delayed wound healing. Interestingly, when the animals were rendered diabetic, the difference in wound healing between the LAR mice and their littermate controls was no longer present, suggesting that decreased myeloid cell ARNT function may be an important factor in impaired wound healing in diabetes. Deferoxamine (DFO) improves wound healing by increasing hypoxia-inducible factors, which require ARNT for function. DFO was not effective in wounds of LAR mice, again suggesting that myeloid cells are important for normal wound healing and for the full benefit of DFO. These findings suggest that myeloid ARNT is important for immune function and wound healing. Increasing ARNT and, more specifically, myeloid ARNT may be a therapeutic strategy to improve wound healing.
Resumo:
The article presents the trajectory of the Swedish psychiatrist Gustav Jonsson (1907-1994) who, in the 1940s, revolutionised the therapeutic and educational treatment of children and young people, considered irreclaimable from the social point of view, who were committed to educational institutions. It analyses the social development of the Welfare State in Sweden, the legal framework of child protection, as well as the context of Swedish residential care centres for children and young people in the first half of the 20th century in order to go further into the psychological and educational work conducted with the Barnbyn Skå group. Jonsson redirected the analysis of violent behaviours that were manifest in these children and young people which made them intractable from the educational point of view and established elements of psychoanalytical understanding, based on a systemic approach in which the family context became essential in order to understand the children’s difficulties. Barnbyn Skå was the centre which, under the guidance of Jonsson, developed this new therapeutic and pedagogic approach. The educational work carried out there exceeded the traditional model in terms of control and surveillance. The methods were considered radical from within pedagogy and caused great controversy which led the centre to continuous investigations on behalf of the Social Services of Stockholm between 1960 and 1970. For several decades Barnbyn Skå has been considered a pioneering experience in the field of Scandinavian child psychiatry.
Resumo:
Overactivation of the sympatho-adrenergic system is an essential mechanism providing short-term adaptation to the stressful conditions of critical illnesses. In the same way, the administration of exogenous catecholamines is mandatory to support the failing circulation in acutely ill patients. In contrast to these short-term benefits, prolonged adrenergic stress is detrimental to the cardiovascular system by initiating a series of adverse effects triggering significant cardiotoxicity, whose pathophysiological mechanisms are complex and only partially elucidated. In addition to the development of myocardial oxygen supply/demand imbalance induced by the sustained activation of adrenergic receptors, catecholamines can damage cardiomyocytes by fostering mitochondrial dysfunction, via two main mechanisms. The first one is calcium overload, consecutive to β-adrenergic receptor-mediated activation of protein kinase A and subsequent phosphorylation of multiple Ca(2+)-cycling proteins. The second one is oxidative stress, primarily related to the transformation of catecholamines into "aminochromes," which undergo redox cycling in mitochondria to generate copious amounts of oxygen-derived free radicals. In turn, calcium overload and oxidative stress promote mitochondrial permeability transition and cardiomyocyte cell death, both via the apoptotic and necrotic pathways. Comparable mechanisms of myocardial toxicity, including marked oxidative stress and mitochondrial dysfunction, have been reported with the use of cocaine, a common recreational drug with potent sympathomimetic activity. The aim of the current review is to present in detail the pathophysiological processes underlying the development of catecholamine and cocaine-induced cardiomyopathy, as such conditions may be frequently encountered in the clinical practice of cardiologists and ICU specialists.
Resumo:
Biografia de Manuel Ballester Boix (1919 – 2005), un dels científics catalans de major prestigi internacional. Les seves aportacions principals dins de l'àmbit de la química van ser el desenvolupament de la química percloorgànica i el descobriment dels Radicals Lliures Inerts.
Resumo:
Parental effort is usually associated with high metabolism that could lead to an increase in the production of reactive oxidative species giving rise to oxidative stress. Since many antioxidants involved in the resistance to oxidative stress can also enhance immune function, an increase in parental effort may diminish the level of antioxidants otherwise involved in parasite resistance. In the present study, we performed brood size manipulation in a population of great tits (Parus major) to create different levels of parental effort. We measured resistance to oxidative stress and used a newly developed quantitative PCR assay to quantify malarial parasitaemia. We found that males with an enlarged brood had significantly higher level of malarial parasites and lower red blood cell resistance to free radicals than males rearing control and reduced broods. Brood size manipulation did not affect female parasitaemia, although females with an enlarged brood had lower red blood cell resistance than females with control and reduced broods. However, for both sexes, there was no relationship between the level of parasitaemia and resistance to oxidative stress, suggesting a twofold cost of reproduction. Our results thus suggest the presence of two proximate and independent mechanisms for the well-documented trade-off between current reproductive effort and parental survival.
Resumo:
Methadone inhibits the cardiac potassium channel hERG and can cause a prolonged QT interval. Methadone is chiral but its therapeutic activity is mainly due to (R)-methadone. Whole-cell patch-clamp experiments using cells expressing hERG showed that (S)-methadone blocked the hERG current 3.5-fold more potently than (R)-methadone (IC50s (half-maximal inhibitory concentrations) at 37 degrees C: 2 and 7 microM). As CYP2B6 slow metabolizer (SM) status results in a reduced ability to metabolize (S)-methadone, electrocardiograms, CYP2B6 genotypes, and (R)- and (S)-methadone plasma concentrations were obtained for 179 patients receiving (R,S)-methadone. The mean heart-rate-corrected QT (QTc) was higher in CYP2B6 SMs (*6/*6 genotype; 439+/-25 ms; n=11) than in extensive metabolizers (non *6/*6; 421+/-25 ms; n=168; P=0.017). CYP2B6 SM status was associated with an increased risk of prolonged QTc (odds ratio=4.5, 95% confidence interval=1.2-17.7; P=0.03). This study reports the first genetic factor implicated in methadone metabolism that may increase the risk of cardiac arrhythmias and sudden death. This risk could be reduced by the administration of (R)-methadone.
Resumo:
Simulated-annealing-based conditional simulations provide a flexible means of quantitatively integrating diverse types of subsurface data. Although such techniques are being increasingly used in hydrocarbon reservoir characterization studies, their potential in environmental, engineering and hydrological investigations is still largely unexploited. Here, we introduce a novel simulated annealing (SA) algorithm geared towards the integration of high-resolution geophysical and hydrological data which, compared to more conventional approaches, provides significant advancements in the way that large-scale structural information in the geophysical data is accounted for. Model perturbations in the annealing procedure are made by drawing from a probability distribution for the target parameter conditioned to the geophysical data. This is the only place where geophysical information is utilized in our algorithm, which is in marked contrast to other approaches where model perturbations are made through the swapping of values in the simulation grid and agreement with soft data is enforced through a correlation coefficient constraint. Another major feature of our algorithm is the way in which available geostatistical information is utilized. Instead of constraining realizations to match a parametric target covariance model over a wide range of spatial lags, we constrain the realizations only at smaller lags where the available geophysical data cannot provide enough information. Thus we allow the larger-scale subsurface features resolved by the geophysical data to have much more due control on the output realizations. Further, since the only component of the SA objective function required in our approach is a covariance constraint at small lags, our method has improved convergence and computational efficiency over more traditional methods. Here, we present the results of applying our algorithm to the integration of porosity log and tomographic crosshole georadar data to generate stochastic realizations of the local-scale porosity structure. Our procedure is first tested on a synthetic data set, and then applied to data collected at the Boise Hydrogeophysical Research Site.
Resumo:
BACKGROUND AND OBJECTIVE: Recent in vitro studies have suggested an important role of cytochrome P450 (CYP) 2B6 and CYP2C19 in methadone metabolism. We aimed to determine the influence of CYP2B6, CYP2C9, and CYP2C19 genetic polymorphism on methadone pharmacokinetics and on the response to treatment. METHODS: We included 209 patients in methadone maintenance treatment on the basis of their response to treatment and their daily methadone dose. Patients were genotyped for CYP2B6, CYP2C9, and CYP2C19. Steady-state trough and peak (R)-, (S)-, and (R,S)-plasma levels and peak-to-trough plasma level ratios were measured. RESULTS: CYP2B6 genotype influences (S)-methadone and, to a lesser extent, (R)-methadone plasma levels, with the median trough (S)-methadone plasma levels being 105, 122, and 209 ng . kg/mL . mg for the noncarriers of allele *6, heterozygous carriers, and homozygous carriers (*6/*6), respectively (P = .0004). CYP2C9 and CYP2C19 genotypes do not influence methadone plasma levels. Lower peak and trough plasma levels of methadone and higher peak-to-trough ratios were measured in patients considered as nonresponders [median (R,S)-methadone trough plasma levels of 183 and 249 ng . kg/mL . mg (P = .0004) and median peak-to-trough ratios of 1.82 and 1.58 for high-dose nonresponders and high-dose responders, respectively (P = .0003)]. CONCLUSION: Although CYP2B6 influences (S)-methadone plasma levels, given that only (R)-methadone contributes to the opioid effect of this drug, a major influence of CYP2B6 genotype on response to treatment is unlikely and has not been shown in this study. Lower plasma levels of methadone in nonresponders, suggesting a higher clearance, and higher peak-to-trough ratios, suggesting a shorter elimination half-life, are in agreement with the usual clinical measures taken for such patients, which are to increase methadone dosages and to split the daily dose into several intakes.
Resumo:
We investigated whether a single blood measurement using the minimally invasive technique of a finger prick to draw a blood sample of 5 µl (to yield a dried blood spot (DBS)) is suitable for the assessment of flurbiprofen (FLB) metabolic ratio (MR). Ten healthy volunteers who had been genotyped for CYP2C9 were recruited as subjects. They received FLB alone in session 1 and FLB with fluconazole in session 2. In session 3, the subjects were pretreated for 4 days with rifampicin and received FLB with the last dose of rifampicin on day 5. Plasma and DBS samples were obtained between 0 and 8 h after FLB administration, and urine was collected during the 8 h after administration. The pharmacokinetic profiles of the drugs were comparable in DBS and plasma. FLB's apparent clearance values decreased by 35% in plasma and DBS during session 2 and increased by 75% in plasma and by 30% in DBS during session 3. Good correlations were observed between MRs calculated from urine, plasma, and DBS samples.
Resumo:
In the wake of the 1989 Exxon Valdez oil spill, spatially and temporally spill-correlated biological effects consistent with polycyclic aromatic hydrocarbon (PAH) exposure were observed. Some works have proposed that confounding sources from local source rocks, prominently coals, are the provenance of the PAHs. Representative coal deposits along the southeast Alaskan coast (Kulthieth Formation) were sampled and fully characterized chemically and geologically. The coals have variable but high total organic carbon content technically classifying as coals and coaly shale, and highly varying PAH contents. Even for coals with high PAH content (approximately 4000 ppm total PAHs), a PAH-sensitive bacterial biosensor demonstrates nondetectable bioavailability as quantified, based on naphthalene as a test calibrant. These results are consistent with studies indicating that materials such as coals strongly diminish the bioavailability of hydrophobic organic compounds and support previous work suggesting that hydrocarbons associated with the regional background in northern Gulf of Alaska marine sediments are not appreciably bioavailable.
Resumo:
With the aim of understanding the mechanisms that control the metamorphic transition from the CH4- to the H2O-(CO2)-dominated fluid zone in the Helvetic domain of the Central Alps of Switzerland, fluid inclusions in quartz, illite ``crystallinity'' index, vitrinite reflectance, and the stable isotope compositions of vein and whole rock minerals and fluids trapped in quartz were investigated along four cross-sections. Increasing temperature during prograde metamorphism led to the formation of dry gas by hydrocarbon cracking in the CH4-zone. Fluid immiscibility in the H2O-CH4-(CO2)-NaCl system resulted in cogenetic, CH4- and H2O-dominated fluid inclusions. In the CH4-zone, fluids were trapped at temperatures <= 270 +/- 5 degrees C. The end of the CH4-zone is markedby a sudden increase of CO2 content in the gas phase of fluid inclusions. At temperatures > 270 +/- 5 degrees C, in the H2O-zone, the total amount of volatiles within the fluid decreased below 1 mol% with no immiscibility. This resulted m total homogenization temperatures of H2O-(CO2-CH4)-NaCl inclusions below 180 degrees C. Hydrogen isotope compositions of methane in fluid inclusion have delta D values of less than -100 parts per thousand in the CH4-zone, typical for an origin through cracking of higher hydrocarbons, but where the methane has not equilibrated with the pore water. delta D values of fluid inclusion water are around -40 parts per thousand., in isotopic equilibrium with phyllosilicates of the whole rocks. Within the CH4 to H2O(CO2) transition zone, delta D(H2O) values in fluid inclusions decrease to -130 parts per thousand interpreted to reflect the contribution of deuterium depleted water from methane oxidation. In the H2O-zone, delta D(H2O) values increase again towards an average of -30 parts per thousand which is again consistent with isotopic equilibrium with host-rock phyllosilicates. delta C-13 values of methane in fluid inclusions from the CH4-zone are around -27 parts per thousand in isotopic equilibrium with calcite in veins and whole rocks. The delta C-13(CH4) values decrease to less than -35 parts per thousand at the transition to the H2O-zone and are no longer in equilibrium with the carbonates in the whole rocks. delta C-13 values of CO, are variable but too low to be in equilibrium with the wall rock fluids, compatible with a contribution of CO2 from closed system oxidation of methane. Differences in isotopic composition between host-rock and Alpine fissure carbonate are generally small, suggesting that the amount of CO2 produced by oxidation of methane was small compared to the C-budget in the rocks and local pore fluids were buffered by the wall rocks during precipitation of calcite within the fissures. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Laktoosi eli maitosokeri on tärkein ainesosa useimpien nisäkkäiden tuottamassa maidossa. Sitä erotetaan herasta, juustosta ja maidosta. Laktoosia käytetään elintarvike- ja lääketeollisuuden raaka-aineena monissaeri tuotteissa. Lääketeollisuudessa laktoosia käytetään esimerkiksi tablettien täyteaineena. Hapettamalla laktoosia voidaan valmistaa laktobionihappoa, 2-keto-laktobionihappoa ja laktuloosia. Laktobionihappoa käytetään biohajoavien pintojen ja kosmetiikkatuotteiden valmistuksessa, sekä sisäelinten säilöntäliuoksissa, joissa laktobionihappo estää happiradikaalien aiheuttamien kudosvaurioiden syntymistä. Tässä työssä laktoosia hapetettiin laktobionihapoksi sekoittimella varustetussa laboratoriomittakaavaisessa panosreaktorissa käyttäenkatalyyttinä palladiumia aktiivihiilellä. Muutamissa kokeissa katalyytin promoottorina käytettiin vismuttia, joka hidastaa katalyytin deaktivoitumista. Työn tarkoituksena oli saada lisää tietoa laktoosin hapettamisen kinetiikasta. Laktoosin hapettumisessa laktobionihapoksi havaittiin selektiivisyyteen vaikuttavan muunmuassa reaktiolämpötila, paine, pH ja käytetyn katalyytin määrä. Katalyyttiä kierrättämällä eri kokeiden välillä saatiin paremmat konversiot, selektiivisyydet ja saannot. Parhaat koetulokset saatiin hapetettaessa synteettisellä ilmalla 60 oC lämpötilassa ja 1 bar paineessa. Tehdyissä kokeissa pH:n säätö tehtiin manuaalisesti, joten pH ei pysynyt koko ajan haluttuna. Laktoosin konversio oli parhaimmillaan 95 %. Laktobionihapon suhteellinen selektiivisyys oli 100% ja suhteellinen saanto 100 %. Kinetiikan matemaattinen mallinnus tehtiin Modest-ohjelmalla käyttäen kokeista saatuja mittaustuloksia.Ohjelman avulla estimoitiin parametreja ja saatiin matemaattinen malli reaktorille. Tässä työssä tehtiin kineettinen mallinnus myös ravistelureaktorissa tehdyille laktoosin hapetuskokeille, missä pH pysyi koko ajan haluttuna 'in-situ' titrauksen avulla. Työn yhteydessä selvitettiin myös mahdollisuutta käyttää monoliittikatalyyttejä laktoosin hapetusreaktiossa.
Resumo:
We present a complete Raman spectroscopic study in two structurally well-defined diradical species of different lengths incorporating oligo p-phenylene vinylene bridges between two polychlorinated triphenylmethyl radical units, a disposition that allows sizeable conjugation between the two radicals through and with the bridge. The spectroscopic data are interpreted and supported by quantum chemical calculations. We focus the attention on the Raman frequency changes, interpretable in terms of: (i) bridge length (conjugation length); (ii) bridge conformational structure; and (iii) electronic coupling between the terminal radical units with the bridge and through the bridge, which could delineate through-bond spin polarization, or spin delocalization. These items are addressed by using the"oligomer approach" in conjunction with pressure and temperature dependent Raman spectroscopic data. In summary, we have attempted to translate the well-known strategy to study the electron (charge) structure of π−conjugated molecules by Raman spectroscopy to the case of electron (spin) interactions via the spin delocalization mechanism.