986 resultados para HYBRID BILAYER MEMBRANE
Resumo:
PURPOSE: The outer limiting membrane (OLM) is considered to play a role in maintaining the structure of the retina through mechanical strength. However, the observation of junction proteins located at the OLM and its barrier permeability properties may suggest that the OLM may be part of the retinal barrier. MATERIAL AND METHODS: Normal and diabetic rat, monkey, and human retinas were used to analyze junction proteins at the OLM. Proteome analyses were performed using immunohistochemistry on sections and flat-mounted retinas and western blotting on protein extracts obtained from laser microdissection of the photoreceptor layers. Semi-thin and ultrastructure analyses were also reported. RESULTS: In the rat retina, in the subapical region zonula occludens-1 (ZO-1), junction adhesion molecule (JAM), an atypical protein kinase C, is present and the OLM shows dense labeling of occludin, JAM, and ZO-1. The presence of occludin has been confirmed using western blot analysis of the microdissected OLM region. In diabetic rats, occludin expression is decreased and glial cells junctions are dissociated. In the monkey retina, occludin, JAM, and ZO-1 are also found in the OLM. Junction proteins have a specific distribution around cone photoreceptors and Müller glia. Ultrastructural analyses suggest that structures like tight junctions may exist between retinal glial Müller cells and photoreceptors. CONCLUSIONS: In the OLM, heterotypic junctions contain proteins from both adherent and tight junctions. Their structure suggests that tight junctions may exist in the OLM. Occludin is present in the OLM of the rat and monkey retina and it is decreased in diabetes. The OLM should be considered as part of the retinal barrier that can be disrupted in pathological conditions contributing to fluid accumulation in the macula.
Resumo:
Confronting a recently mated female with a strange male can induce a pregnancy block ('Bruce effect'). The physiology of this effect is well studied, but its functional significance is still not fully understood. The 'anticipated infanticide hypothesis' suggests that the pregnancy block serves to avoid the cost of embryogenesis and giving birth to offspring that are likely to be killed by a new territory holder. Some 'compatible-genes sexual selection hypotheses' suggest that the likelihood of a pregnancy block is also dependent on the female's perception of the stud's and the stimulus male's genetic quality. We used two inbred strains of mice (C57BL/6 and BALB/c) to test all possible combinations of female strain, stud strain, and stimulus strain under experimental conditions (N(total) = 241 mated females). As predicted from previous studies, we found increased rates of pregnancy blocks if stud and stimulus strains differed, and we found evidence for hybrid vigour in offspring of between-strain mating. Despite the observed heterosis, pregnancies of within-strain matings were not more likely to be blocked than pregnancies of between-strain matings. A power analysis revealed that if we missed an existing effect (type-II error), the effect must be very small. If a female gave birth, the number and weight of newborns were not significantly influenced by the stimulus males. In conclusion, we found no support for the 'compatible-genes sexual selection hypotheses'.
Resumo:
Specialised plant cell types often locally modify their cell walls as part of a developmental program, as do cells that are challenged by particular environmental conditions. Modifications can include deposition of secondary cellulose, callose, cutin, suberin or lignin. Although the biosyntheses of cell wall components are more and more understood, little is known about the mechanisms that control localised deposition of wall materials. During metaxylem vessel differentiation, site-specific cell wall deposition is locally prevented by the microtubule depolymerising protein MIDD1, which disassembles the cytoskeleton and precludes the cellulose synthase complex from depositing cellulose. As a result, metaxylem vessel secondary cell wall appears pitted. How MIDD1 is tethered at the plasma membrane and how other cell wall polymers are locally deposited remain elusive. Casparian strips in the root endodermis represent a further example of local cell wall deposition. The recent discovery of the Casparian Strip membrane domain Proteins (CASPs), which are located at the plasma membrane and are important for the site-specific deposition of lignin during Casparian strip development, establishes the root endodermis as an attractive model system to study the mechanisms of localised cell wall modifications. How secondary modifications are modulated and monitored during development or in response to environmental changes is another question that still misses a complete picture.
Resumo:
In this article we present a hybrid approach for automatic summarization of Spanish medical texts. There are a lot of systems for automatic summarization using statistics or linguistics, but only a few of them combining both techniques. Our idea is that to reach a good summary we need to use linguistic aspects of texts, but as well we should benefit of the advantages of statistical techniques. We have integrated the Cortex (Vector Space Model) and Enertex (statistical physics) systems coupled with the Yate term extractor, and the Disicosum system (linguistics). We have compared these systems and afterwards we have integrated them in a hybrid approach. Finally, we have applied this hybrid system over a corpora of medical articles and we have evaluated their performances obtaining good results.
Resumo:
The siderophore pyochelin of Pseudomonas aeruginosa promotes growth under iron limitation and induces the expression of its biosynthesis genes via the transcriptional AraC/XylS-type regulator PchR. Pseudomonas fluorescens strain CHA0 makes the optical antipode of pyochelin termed enantio-pyochelin, which also promotes growth and induces the expression of its biosynthesis genes when iron is scarce. Growth promotion and signalling by pyochelin and enantio-pyochelin are highly stereospecific and are known to involve the pyochelin and enantio-pyochelin outer-membrane receptors FptA and FetA, respectively. Here we show that stereospecificity in signalling is also based on the stereospecificity of the homologous PchR proteins of P. aeruginosa and P. fluorescens towards their respective siderophore effectors. We found that PchR functioned in the heterologous species only if supplied with its native ligand and that the FptA and FetA receptors enhanced the efficiency of signalling. By constructing and expressing hybrid and truncated PchR regulators we showed that the weakly conserved N-terminal domain of PchR is responsible for siderophore specificity. Thus, both uptake and transcriptional regulation confer stereospecificity to pyochelin and enantio-pyochelin biosynthesis.
Resumo:
As an approved vaccine adjuvant for use in humans, alum has vast health implications, but, as it is a crystal, questions remain regarding its mechanism. Furthermore, little is known about the target cells, receptors, and signaling pathways engaged by alum. Here we report that, independent of inflammasome and membrane proteins, alum binds dendritic cell (DC) plasma membrane lipids with substantial force. Subsequent lipid sorting activates an abortive phagocytic response that leads to antigen uptake. Such activated DCs, without further association with alum, show high affinity and stable binding with CD4(+) T cells via the adhesion molecules intercellular adhesion molecule-1 (ICAM-1) and lymphocyte function-associated antigen-1 (LFA-1). We propose that alum triggers DC responses by altering membrane lipid structures. This study therefore suggests an unexpected mechanism for how this crystalline structure interacts with the immune system and how the DC plasma membrane may behave as a general sensor for solid structures.
Resumo:
In hybrid zones, endogenous counter-selection of hybrids is usually first expressed as reduced fertility or viability in hybrids of the heterogametic sex, a mechanism known as Haldane's rule. This phenomenon often leads to a differential of gene flow between sex-linked markers. Here, we address the possibility of a differential gene flow for Y chromosome, mtDNA and autosomal markers across the hybrid zone between the genetically and chromosomally well-differentiated species Sorex antinorii and Sorex araneus race Vaud. Intermarker comparison clearly revealed coincidental centre and very abrupt clines for all three types of markers. The overall level of genetic differentiation between the two species must be strong enough to hinder asymmetric introgression. Cyto-nuclear mismatches were also observed in the centre of hybrid zone. The significantly lower number of mismatches observed in males than in females possibly results from Y chromosome-mtDNA interactions. Results are compared with those previously reported in another hybrid zone between S. antinori and S. araneus race Cordon.
Resumo:
Genome-wide scans of genetic differentiation between hybridizing taxa can identify genome regions with unusual rates of introgression. Regions of high differentiation might represent barriers to gene flow, while regions of low differentiation might indicate adaptive introgression-the spread of selectively beneficial alleles between reproductively isolated genetic backgrounds. Here we conduct a scan for unusual patterns of differentiation in a mosaic hybrid zone between two mussel species, Mytilus edulis and M. galloprovincialis. One outlying locus, mac-1, showed a characteristic footprint of local introgression, with abnormally high frequency of edulis-derived alleles in a patch of M. galloprovincialis enclosed within the mosaic zone, but low frequencies outside of the zone. Further analysis of DNA sequences showed that almost all of the edulis allelic diversity had introgressed into the M. galloprovincialis background in this patch. We then used a variety of approaches to test the hypothesis that there had been adaptive introgression at mac-1. Simulations and model fitting with maximum-likelihood and approximate Bayesian computation approaches suggested that adaptive introgression could generate a "soft sweep," which was qualitatively consistent with our data. Although the migration rate required was high, it was compatible with the functioning of an effective barrier to gene flow as revealed by demographic inferences. As such, adaptive introgression could explain both the reduced intraspecific differentiation around mac-1 and the high diversity of introgressed alleles, although a localized change in barrier strength may also be invoked. Together, our results emphasize the need to account for the complex history of secondary contacts in interpreting outlier loci.
Resumo:
Red blood cells (RBCs) present unique reversible shape deformability, essential for both function and survival, resulting notably in cell membrane fluctuations (CMF). These CMF have been subject of many studies in order to obtain a better understanding of these remarkable biomechanical membrane properties altered in some pathological states including blood diseases. In particular the discussion over the thermal or metabolic origin of the CMF has led in the past to a large number of investigations and modeling. However, the origin of the CMF is still debated. In this article, we present an analysis of the CMF of RBCs by combining digital holographic microscopy (DHM) with an orthogonal subspace decomposition of the imaging data. These subspace components can be reliably identified and quantified as the eigenmode basis of CMF that minimizes the deformation energy of the RBC structure. By fitting the observed fluctuation modes with a theoretical dynamic model, we find that the CMF are mainly governed by the bending elasticity of the membrane and that shear and tension elasticities have only a marginal influence on the membrane fluctations of the discocyte RBC. Further, our experiments show that the role of ATP as a driving force of CMF is questionable. ATP, however, seems to be required to maintain the unique biomechanical properties of the RBC membrane that lead to thermally excited CMF.
Resumo:
Purpose:To describe the indications, the surgical procedure and the clinical outcome of MLAM in the treatment of non traumatic corneal perforations and descemetoceles . Methods:A prospective, non comparative, interventional case series of eight consecutive patients (mean age 59 years old, 6 men and 2 women) with non traumatic corneal perforations or descemetoceles.The surgery consisted in a MLAM transplantation of a cryopreservated human amniotic membrane. The series included: three active herpetic keratitis, one rosacea, one perforation of an hydrops, one cicatricial pemphigoid, one perforation after an abcess in a corneal graft and one perforation after protonbeamtherapy. The clinical outcome included: the follow-up, the integrity of the eye, corneal epithelialization, inflammation and neovascularization, and the integration of the MLAM. Stromal thickness was followed precisely with the slit lamp. A corneal graft was performed at one patient after the MLAM, allowing microscopic investigation of the removed MLAM integrated in the cornea. Results:The mean follow-up was 8.78 months (range 3.57 to 30.17). Amniotic membrane transplantation was successful and reduced inflammation in 7 patients out of 8 ,after one procedure.One patient who presented a large herpetic keratitis epithelial defect with corneal anaesthesia had his MLAM dissolved after two weeks with an aqueous leakage. Epithelium healed within 3 weeks above 7 MLAM and remained stable at 3 months in 7 out of 8 patients. MLAM opacification gradually disappeared over a few months, however, stromal layers filling in the corneal perforations or above the descemetoceles remained stable. Conclusions:MLAM transplantation is a safe, effective and useful technique to cure non traumatic corneal perforations and descemetoceles. It can be performed in emergency despite the presence of an active inflammation or infection. By facilitating epithelialization, reducing inflammation and neovascularization, it allows corneal surface reconstruction in patients with persistent epithelial defects and corneal melting that usually ends in a perforation. For full visual rehabilitation, a delayed penetrating keratoplasty is required.
Resumo:
Using the yeast two-hybrid system, we identified ezrin as a protein interacting with the C-tail of the alpha1b-adrenergic receptor (AR). The interaction was shown to occur in vitro between the receptor C-tail and the N-terminal portion of ezrin, or Four-point-one ERM (FERM) domain. The alpha1b-AR/ezrin interaction occurred inside the cells as shown by the finding that the transfected alpha1b-AR and FERM domain or ezrin could be coimmunoprecipitated from human embryonic kidney 293 cell extracts. Mutational analysis of the alpha1b-AR revealed that the binding site for ezrin involves a stretch of at least four arginines on the receptor C-tail. The results from both receptor biotinylation and immunofluorescence experiments indicated that the FERM domain impaired alpha1b-AR recycling to the plasma membrane without affecting receptor internalization. The dominant negative effect of the FERM domain, which relies on its ability to mask the ezrin binding site for actin, was mimicked by treatment of cells with cytochalasin D, an actin depolymerizing agent. A receptor mutant (DeltaR8) lacking its binding site in the C-tail for ezrin displayed delayed receptor recycling. These findings identify ezrin as a new protein directly interacting with a G protein-coupled receptor and demonstrate the direct implication of ezrin in GPCR trafficking via an actin-dependent mechanism.