976 resultados para HIGH-FIELD
Resumo:
In this paper, an effort is made to study accurately the field distribution for various types of ceramic insulators used for high-voltage transmission. The surface charge simulation method (SCSM) is employed for the field computation. With the help of SCSM program, a Novel field reduction electrode is designed and developed to reduce the maximum field around the pin region. In order to experimentally analyze the performance of discs with field reduction electrode, special artificial pollution test facility was built and utilized. The experimental results show better surface flashover performance of ceramic insulators used in high-voltage transmission and distribution systems.
Resumo:
We study the bound states of two spin-1/2 fermions interacting via a contact attraction (characterized by a scattering length) in the singlet channel in three-dimensional space in presence of a uniform non-Abelian gauge field. The configuration of the gauge field that generates a Rashba-type spin-orbit interaction is described by three coupling parameters (lambda(x),lambda(y),lambda(z)). For a generic gauge field configuration, the critical scattering length required for the formation of a bound state is negative, i.e., shifts to the ``BCS side'' of the resonance. Interestingly, we find that there are special high-symmetry configurations (e.g., lambda(x) = lambda(y) = lambda(z)) for which there is a two-body bound state for any scattering length however small and negative. Remarkably, the bound-state wave functions obtained for such configurations have nematic spin structure similar to those found in liquid He-3. Our results show that the BCS-BEC (Bose-Einstein condensation) crossover is drastically affected by the presence of a non-Abelian gauge field. We discuss possible experimental signatures of our findings both at high and low temperatures.
Resumo:
FePS3 is a layered antiferromagnet (T N=123 K) with a marked Ising anisotropy in magnetic properties. The anisotropy arises from the combined effect of the trigonal distortion from octahedral symmetry and spin-orbit coupling on the orbitally degenerate5 T 2g ground state of the Fe2+ ion. The anisotropic paramagnetic susceptibilities are interpreted in terms of the zero field Hamiltonian, ?=?i [?(L iz 2 ?2)+|?|L i .S i ]?? ij J ij S i .S j . The crystal field trigonal distortion parameter ?, the spin-orbit coupling ? and the isotropic Heisenberg exchange,J ij, were evaluated from an analysis of the high temperature paramagnetic susceptibility data using the Correlated Effective Field (CEF) theory for many-body magnetism developed by Lines. Good agreement with experiment were obtained for ?/k=215.5 K; ?/k=166.5 K;J nn k=27.7 K; andJ nnn k=?2.3 K. Using these values of the crystal field and exchange parameters the CEF predicts aT N=122 K for FePS3, which is remarkably close to the observed value of theT N. The accuracy of the CEF approximation was also ascertained by comparing the calculated susceptibilities in the CEF with the experimental susceptibility for the isotropic Heisenberg layered antiferromagnet MnPS3, for which the high temperature series expansion susceptibility is available.
Resumo:
Pure Y2O3 and Y2O3---ZrO2 solid solutions have been prepared by melt atomization and by pyrolysis of nitrate solutions. Extended solubility is readily achieved in both techniques for the entire composition range investigated: melts with 0–30% ZrO2 and precursors with 0–50% ZrO2. However, solidification of under cooled droplets yields almost exclusively single phase powders with the structure of cubic yttria (D53). In contrast, the pyrolysis route leads to a sequence of metastable microstructures beginning with a nanocrystalline disordered fluorite-based (C1) solid solution. Further heating leads to the evolution of much larger (micron size) flake crystals with a {001} texture, concurrent with partial ordering of the oxygen ions to the sites occupied in the D53 structure. The driving force for ordering and the rate of grain growth decrease with increasing ZrO2 addition. Abrupt heating to high temperatures or electron irradiation can induce ordering without substantial grain growth. There is no significant reduction in porosity during the recrystallization, which with the other observations suggests that grain growth is driven by the free energy available for the ordering transformation from fluorite to the yttria structure. This route offers opportunities for single crystal thin film development at relatively low processing temperatures.
Resumo:
Pure Y2O3 and Y2O3-ZrO2 solid solutions have been prepared by melt atomization and by pyrolysis of nitrate solutions. Extended solubility is readily achieved in both techniques for the entire composition range investigated: melts with 0-30% ZrO2 and precursors with 0-50% ZrO2. However, solidification of under cooled droplets yields almost exclusively single phase powders with the structure of cubic yttria (D5(3)). In contrast, the pyrolysis route leads to a sequence of metastable microstructures beginning with a nanocrystalline disordered fluorite-based (C1) solid solution. Further heating leads to the evolution of much larger (micron size) flake crystals with a {001} texture, concurrent with partial ordering of the oxygen ions to the sites occupied in the D5(3) structure. The driving force for ordering and the rate of grain growth decrease with increasing ZrO2 addition. Abrupt heating to high temperatures or electron irradiation can induce ordering without substantial grain growth. There is no significant reduction in porosity during the recrystallization, which with the other observations suggests that grain growth is driven by the free energy available for the ordering transformation from fluorite to the yttria structure. This route offers opportunities for single crystal thin film development at relatively low processing temperatures.
Resumo:
The complete amino acid sequence of two non identical subunits of the glucose/mannose-specific lectin from Dolichos lab lab (field bean) has been determined by sequential Edman analyses of the intact subunits and peptides derived by enzymatic and chemical cleavage. Peptides were purified by reverse phase high performance liquid chromatography and ion pair chromatography. The D. lab lab lectin is a glycoprotein having two polypeptide chains of 132 and 105 amino acid residues. The amino acid sequence of the D. Lab lab lectin is compared with the various lectins of the family Leguminosae. The D. lab lab lectin is the only species of the tribe Phaseoleae that contains two nonidentical subunits of almost equal size and that shows a specificity to glucose/ mannose. The lectin shows a greater homology to the glucose/mannose specific lectins, especially concanavalin A. The unique subunit architecture of the D. lab lab lectin indicates the presence of new post translational cleavage sites.
Resumo:
Nonclassicality in the sense of quantum optics is a prerequisite for entanglement in multimode radiation states. In this work we bring out the possibilities of passing from the former to the latter, via action of classicality preserving systems like beam splitters, in a transparent manner. For single-mode states, a complete description of nonclassicality is available via the classical theory of moments, as a set of necessary and sufficient conditions on the photon number distribution. We show that when the mode is coupled to an ancilla in any coherent state, and the system is then acted upon by a beam splitter, these conditions turn exactly into signatures of negativity under partial transpose (NPT) entanglement of the output state. Since the classical moment problem does not generalize to two or more modes, we turn in these cases to other familiar sufficient but not necessary conditions for nonclassicality, namely the Mandel parameter criterion and its extensions. We generalize the Mandel matrix from one-mode states to the two-mode situation, leading to a natural classification of states with varying levels of nonclassicality. For two-mode states we present a single test that can, if successful, simultaneously show nonclassicality as well as NPT entanglement. We also develop a test for NPT entanglement after beam-splitter action on a nonclassical state, tracing carefully the way in which it goes beyond the Mandel nonclassicality test. The result of three-mode beam-splitter action after coupling to an ancilla in the ground state is treated in the same spirit. The concept of genuine tripartite entanglement, and scalar measures of nonclassicality at the Mandel level for two-mode systems, are discussed. Numerous examples illustrating all these concepts are presented.
Resumo:
All ‘undoped’ cuprates are antiferromagnetic Mott insulators. We argue that with doping they remain to be insulators including the ‘overdoped’ samples. Hence, there is no clear dividing line between non–metallic cuprates and high–temperature superconductors. Based on the generic Hamiltonian including the electron–phonon interaction and the direct Coulomb repulsion the ground state of doped cuprates is shown to be a charged 2e Bose liquid of small bipolarons. A theory of the normal state transport of copper oxides is developed. The temperature dependence of the resistivity and of the Hall effect agrees remarkably well with the experimental data in La2–xSrxCuO4 for the entire temperature regime including unusual ‘logarithmic’ low–temperature region. The violation of Kohler's rule in magnetoresistivity is explained. The resistive and thermodynamic superconducting transitions in a magnetic field are quantitatively described.
Resumo:
This paper investigates the loss of high mass ions due to their initial thermal energy in ion trap mass analyzers. It provides an analytical expression for estimating the percentage loss of ions of a given mass at a particular temperature, in a trap operating under a predetermined set of conditions. The expression we developed can be used to study the loss of ions due to its initial thermal energy in traps which have nonlinear fields as well as those which have linear fields. The expression for the percentage of ions lost is shown to be a function of the temperature of the ensemble of ions, ion mass and ion escape velocity. An analytical expression for the escape velocity has also been derived in terms of the trapping field, drive frequency and ion mass. Because the trapping field is determined by trap design parameters and operating conditions, it has been possible to study the influence of these parameters on ion loss. The parameters investigated include ion temperature, magnitude of the initial potential applied to the ring electrode (which determines the low mass cut-off), trap size, dimensions of apertures in the endcap electrodes and RF drive frequency. Our studies demonstrate that ion loss due to initial thermal energy increases with increase in mass and that, in the traps investigated, ion escape occurs in the radial direction. Reduction in the loss of high mass ions is favoured by lower ion temperatures, increasing low mass cut-off, increasing trap size, and higher RF drive frequencies. However, dimensions of the apertures in the endcap electrodes do not influence ion loss in the range of aperture sizes considered. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Fluorene and its derivatives are well-known organic semiconducting materials in the field of opto-electronic devices because of their charge transport properties. Three new organic semiconducting materials, namely, 2,2'-((9,9-butyl-9H-fluorene-2,7-diyl)bis(4,1 phenylene))bisbenzod]thiazole, C4; 2,2'-((octyl-9H-fluorene-2,7-diyl)bis(4,1 phenylene))bisbenzod]thiazole, C8; and 2,2'-((9,9-dodecayl-9H-fluorene-2,7-diyl)bis(4,1 phenylene))bisbenzod]thiazole, C12 with a benzothiazole-fluorene backbone, were synthesized and characterized for their photophysical properties. A phenomenon of concomitant polymorphism has been investigated in the first two derivatives (C4 and C8) and has been analyzed systematically in terms of the packing characteristics involving pi ... pi interactions. The conformational flexibility of the pi-conjugated 2,2'-(fluorene-2,7-diyl)bis(4,1 phenylene)bisbenzod]thiazole backbone coupled with orientational freedom of the terminal alkyl chains were found to be the key factors responsible for these polymorphic modifications. Attempts to grow suitable crystals for single crystal X-ray diffraction of compound C12 were unsuccessful.
Resumo:
Using a lattice model for adsorption in microporous materials, pure component adsorption isotherms are obtained within a mean field approximation for methane at 300 K and xenon at 300 and 360 K in zeolite NaA. It is argued that the increased repulsive adsorbate-adsorbate interactions at high coverages must play an important role in determining the adsorption behavior. Therefore, this feature is incorporated through a "coverage-dependent interaction'' model, which introduces a free, adjustable parameter. Another important feature, the site volume reduction, has been treated in two ways: a van der Waal model and a 1D hard-rod theory [van Tassel et al., AIChE J. 40, 925 (1994)]; we have also generalized the latter to include all possible adsorbate overlap scenarios. In particular, the 1D hard-rod model, with our coverage-dependent interaction model, is shown to be in best quantitative agreement with the previous grand canonical Monte Carlo isotherms. The expressions for the isosteric heats of adsorption indicate that attractive and repulsive adsorbate-adsorbate interactions increase and decrease the heats of adsorption, respectively. It is concluded that within the mean field approximation, our simple model for repulsive interactions and the 1D hard-rod model for site volume reduction are able to capture most of the important features of adsorption in confined regions. (C) 1999 American Institute of Physics. [S0021-9606(99)70515-5].
Resumo:
Dikpati and Choudhuri (1993, 1995) developed a model for the poleward migration of the weak diffuse magnetic field on the Sun's surface. This field was identified with the poloidal component produced by the solar dynamo operating at the base of the convection zone, and its evolution was studied by considering the effects of meridional circulation and turbulent diffusion. The earlier model is extended in this paper by incorporating the flux from, the decay of tilted active regions near the solar surface as an additional source of the poloidal field. This extended model can now explain various low-latitude features in the time-latitude diagram of the weak diffuse fields. These low-latitude features could not be accounted for in the earlier model, which was very successful in modeling the behavior at high latitudes. The time-latitude diagrams show that regions of a particular polarity often have 'tongues' of opposite polarity. Such tongues can be produced in the theoretical model by incorporating fluctuations in the source term arising out of the decaying active regions.
Resumo:
Capacitive-resistive transients in extended media are discussed in tenns of electric field quantities. Obviously, in rhese problems, the contribution of the magnetlc field to the electric field is deemed negligible. For a simple lllusfratlve example, the field solution is compared with the circuit-theoretical resuit for the voltage and current. An algorithm for solving such transients in space and time doman with the help of a Laplace solver is presented. Any other Laplace solver can also be used far this purpose. Its applicability is demonstrated with three examples, one of which is chosen to have a circuit-theoretical solution.
Resumo:
New metallurgical and ethnographic observations of the traditional manufacture of specular high-tin bronze mirrors in Kerala state of southern India are discussed, which is an exceptional example of a surviving craft practice of metal mirror-making in the world. The manufacturing process has been reconstructed from analytical investigations made by Srinivasan following a visit late in 1991 to a mirror making workshop and from her technical studies of equipment acquired by Glover in March 1992 from another group of mirror makers from Pathanamthita at an exhibition held at Crafts Museum, Delhi. Finished and unfinished mirror from two workshops were of a binary, copper-tin alloy of 33% tin which is close to the composition of pure delta phase, so that these mirrors are referred to here as ‘delta’ bronzes. For the first time, metallurgical and field observations were made by Srinivasan in 1991 of the manufacture of high-tin ‘beta’ bonze vessels from Palghat district, Kerala, i‥e of wrought and quenched 23% tin bronze. This has provided the first metallurgical record for a surviving craft of high-tin bronze bowl making which can be directly related to archaeological finds of high-tin bronze vessels from the Indian subcontinent and Southeast Asia. New analytical investigations are presented of high-tin beta bronzes from the Indian subcontinent which are some of the earliest reported worldwide. These coupled with the archaeometallurgical evidence suggests that these high-tin bronze techniques are part of a long, continuing, and probably indigenous tradition of the use of high-tin bronzes in the Indian subcontinent with finds reported even from Indus Valley sites. While the source of tin has been problematic, new evidence on bronze smelting slags and literary evidence suggests there may have been some sources of tin in South India.
Resumo:
We investigate the ground state of interacting spin-1/2 fermions in three dimensions at a finite density (rho similar to k(F)(3)) in the presence of a uniform non-Abelian gauge field. The gauge-field configuration (GFC) described by a vector lambda equivalent to (lambda(x),lambda(y),lambda(z)), whose magnitude lambda determines the gauge coupling strength, generates a generalized Rashba spin-orbit interaction. For a weak attractive interaction in the singlet channel described by a small negative scattering length (k(F)vertical bar a(s)vertical bar less than or similar to 1), the ground state in the absence of the gauge field (lambda = 0) is a BCS (Bardeen-Cooper-Schrieffer) superfluid with large overlapping pairs. With increasing gauge-coupling strength, a non-Abelian gauge field engenders a crossover of this BCS ground state to a BEC (Bose-Einstein condensate) of bosons even with a weak attractive interaction that fails to produce a two-body bound state in free vacuum (lambda = 0). For large gauge couplings (lambda/k(F) >> 1), the BEC attained is a condensate of bosons whose properties are solely determined by the Rashba gauge field (and not by the scattering length so long as it is nonzero)-we call these bosons ``rashbons.'' In the absence of interactions (a(s) = 0(-)), the shape of the Fermi surface of the system undergoes a topological transition at a critical gauge coupling lambda(T). For high-symmetry GFCs we show that the crossover from the BCS superfluid to the rashbon BEC occurs in the regime of lambda near lambda(T). In the context of cold atomic systems, these results make an interesting suggestion of obtaining BCS-BEC crossover through a route other than tuning the interaction between the fermions.