938 resultados para HIGH-ENERGY EMISSION


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Photoluminescent emission is observed from surface-passivated PbS nanocrystals following the two-photon excitation of high-energy excitonic states. The emission appears directly at the excitation energy with no detectable Stokes-shift for a wide range of excitation energies. The observation of direct emission from states excited by two-photon absorption indicates that the parity of the excited states of surface-passivated PbS nanocrystals is partially mixed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Environmentally stable high-power erbium fiber soliton lasers are constructed by Kerr or carrier-type mode locking. We obtain high-energy pulses by using relatively short fiber lengths and providing large amounts of negative dispersion with chirped fiber Bragg gratings. The pulse energies and widths generated with both types of soliton laser are found to scale with the square root of the cavity dispersion. Kerr mode locking requires pulses with an approximately three times higher nonlinear phase shift in the cavity than carrier mode locking, which leads to the generation of slightly shorter pulses with as much as seven times higher pulse energies at the mode-locking threshold.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Optical coherence tomography (OCT) is a non-invasive three-dimensional imaging system that is capable of producing high resolution in-vivo images. OCT is approved for use in clinical trials in Japan, USA and Europe. For OCT to be used effectively in a clinical diagnosis, a method of standardisation is required to assess the performance across different systems. This standardisation can be implemented using highly accurate and reproducible artefacts for calibration at both installation and throughout the lifetime of a system. Femtosecond lasers can write highly reproducible and highly localised micro-structured calibration artefacts within a transparent media. We report on the fabrication of high quality OCT calibration artefacts in fused silica using a femtosecond laser. The calibration artefacts were written in fused silica due to its high purity and ability to withstand high energy femtosecond pulses. An Amplitude Systemes s-Pulse Yb:YAG femtosecond laser with an operating wavelength of 1026 nm was used to inscribe three dimensional patterns within the highly optically transmissive substrate. Four unique artefacts have been designed to measure a wide variety of parameters, including the points spread function (PSF), modulation transfer function (MTF), sensitivity, distortion and resolution - key parameters which define the performance of the OCT. The calibration artefacts have been characterised using an optical microscope and tested on a swept source OCT. The results demonstrate that the femtosecond laser inscribed artefacts have the potential of quantitatively and qualitatively validating the performance of any OCT system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The use of the pyrolysis process to obtain valuable products from biomass is amongst the technologies being investigated as a source for renewable energy. The pyrolysis process yields products such as biochar, bio-oil and non condensable gases. The main objective of this project is to increase energy recovery from sewage sludge by utilising the intermediate pyrolysis process. The intermediate pyrolysis has a residence time ranging from 5 to 10 minutes. The main product yields from sewage sludge pyrolysis are 50 wt% biochar, 40 wt% bio-oil and 10 wt% non condensable gases. The project was carried out on a pilot plant scale reactor with a load capacity of 20 kg/h. This enabled a high yield of biochar and bio-oil. The characterisation of the products indicated that the organic phase of the bio-oil had good fuel properties such as having high energy content of 39 MJ/kg, low acid number of 21.5, high flash point of 150 and viscosity of 35 cSt. An increase in pyrolysis experiments enabled large quantities of pyrolysis oil production. Co-pyrolysis of sewage sludge was carried out on laboratory scale with mixed wood, rapeseed and straw. It found that there was an increase in bio-oil quantity with rapeseed while co-pyrolysis with wood helped to mask the smell of the sludge pyrolysis oil. Engine test were successfully carried out in an old Lister engine with pyrolysis oil fractions of 30% and 50% blended with biodiesel. This indicates that these pyrolysis oil fractions can be used in similar engine types without any problems however long term effects in ordinary engines are unknown. An economic evaluation was carried out about the implementation of the intermediate pyrolysis process for electricity production in a CHP using the pyrolysis oil. The prices of electricity per kWh were found to be very high.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents the current status of our research in mode-locked quantum-dot edge-emitting laser diodes, particularly highlighting the recent progress in spectral and temporal versatility of both monolithic and external-cavity laser configurations. Spectral versatility is demonstrated through broadband tunability and novel mode-locking regimes that involve distinct spectral bands, such as dual-wavelength mode-locking, and robust high-power wavelength bistability. Broad tunability of the pulse repetition rate is also demonstrated for an external-cavity mode-locked quantum-dot laser, revealing a nearly constant pulse peak power at different pulse repetition rates. High-energy and low-noise pulse generations are demonstrated for low-pulse repetition rates. These recent advances confirm the potential of quantum-dot lasers as versatile, compact, and low-cost sources of ultrashort pulses. © 2011 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report on a record-high output power from an optically pumped quantum-dot vertical-external-cavity surface-emitting laser, optimized for high-power emission at 1040 nm. A maximum continuous-wave output power of 8.41 W is obtained at a heat sink temperature of 1.5 °C. By inserting a birefringent filter inside the laser cavity, a wavelength tuning over a range of 45 nm is achieved. © 2014 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purpose: A variety of biomass plantations are being raised for energy production. This case study is on energy production potential of seasonal oil bearing crops in India. These crops have the advantage of producing oil (liquid fuel) as well as biomass as agro residue (solid fuel). The purpose of the study is to estimate total energy yields of oil bearing crops and compare with other types of energy plantations. Also oil bearing crops bioaccumulate metals and thus phytoremediate soil. This provides scope for waste water irrigation. Design/methodology/approach: Relevant published papers on energy production by raising oil bearing crops have been analyzed. The effect of waste water irrigation and agronomic practices on increasing productivity is given special attention. Findings: It is shown that the seasonal oil bearing crops such as castor have a high potential to generate energy and this is comparable to energy produced by many perennial grasses. The energy yields of castor under irrigated condition was 196×103 MJ/ha and this is comparable to the reed canary grass which yields 195×103 MJ/ha. Some of the oil bearing crops are also super accumulators of certain toxic metals. Research limitations/implications: In this study, only all the accessible papers on the topic could be analyzed. Practical implications: This case study indicates that raising oil bearing crops such as castor using waste water has many advantages which include high energy yields, utilization of waste water for productive purpose and phytoremediation of soil. Originality/value: The comparison made between various types of energy crops for their energy generation is an original contribution. Findings of economic and environmental benefits by waste water irrigation are also of value. © Emerald Group Publishing Limited.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The UK government aims at achieving 80% CO2 emission reduction by 2050 which requires collective efforts across all the UK industry sectors. In particular, the housing sector has a large potential to contribute to achieving the aim because the housing sector alone accounts for 27% of the total UK CO2 emission, and furthermore, 87% of the housing which is responsible for current 27% CO2 emission will still stand in 2050. Therefore, it is essential to improve energy efficiency of existing housing stock built with low energy efficiency standard. In order for this, a whole‐house needs to be refurbished in a sustainable way by considering the life time financial and environmental impacts of a refurbished house. However, the current refurbishment process seems to be challenging to generate a financially and environmentally affordable refurbishment solution due to the highly fragmented nature of refurbishment practice and a lack of knowledge and skills about whole‐house refurbishment in the construction industry. In order to generate an affordable refurbishment solution, diverse information regarding costs and environmental impacts of refurbishment measures and materials should be collected and integrated in right sequences throughout the refurbishment project life cycle among key project stakeholders. Consequently, various researchers increasingly study a way of utilizing Building Information Modelling (BIM) to tackle current problems in the construction industry because BIM can support construction professionals to manage construction projects in a collaborative manner by integrating diverse information, and to determine the best refurbishment solution among various alternatives by calculating the life cycle costs and lifetime CO2 performance of a refurbishment solution. Despite the capability of BIM, the BIM adoption rate is low with 25% in the housing sector and it has been rarely studied about a way of using BIM for housing refurbishment projects. Therefore, this research aims to develop a BIM framework to formulate a financially and environmentally affordable whole‐house refurbishment solution based on the Life Cycle Costing (LCC) and Life Cycle Assessment (LCA) methods simultaneously. In order to achieve the aim, a BIM feasibility study was conducted as a pilot study to examine whether BIM is suitable for housing refurbishment, and a BIM framework was developed based on the grounded theory because there was no precedent research. After the development of a BIM framework, this framework was examined by a hypothetical case study using BIM input data collected from questionnaire survey regarding homeowners’ preferences for housing refurbishment. Finally, validation of the BIM framework was conducted among academics and professionals by providing the BIM framework and a formulated refurbishment solution based on the LCC and LCA studies through the framework. As a result, BIM was identified as suitable for housing refurbishment as a management tool, and it is timely for developing the BIM framework. The BIM framework with seven project stages was developed to formulate an affordable refurbishment solution. Through the case study, the Building Regulation is identified as the most affordable energy efficiency standard which renders the best LCC and LCA results when it is applied for whole‐house refurbishment solution. In addition, the Fabric Energy Efficiency Standard (FEES) is recommended when customers are willing to adopt high energy standard, and the maximum 60% of CO2 emissions can be reduced through whole‐house fabric refurbishment with the FEES. Furthermore, limitations and challenges to fully utilize BIM framework for housing refurbishment were revealed such as a lack of BIM objects with proper cost and environmental information, limited interoperability between different BIM software and limited information of LCC and LCA datasets in BIM system. Finally, the BIM framework was validated as suitable for housing refurbishment projects, and reviewers commented that the framework can be more practical if a specific BIM library for housing refurbishment with proper LCC and LCA datasets is developed. This research is expected to provide a systematic way of formulating a refurbishment solution using BIM, and to become a basis for further research on BIM for the housing sector to resolve the current limitations and challenges. Future research should enhance the BIM framework by developing more detailed process map and develop BIM objects with proper LCC and LCA Information.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Environmentally stable high-power erbium fiber soliton lasers are constructed by Kerr or carrier-type mode locking. We obtain high-energy pulses by using relatively short fiber lengths and providing large amounts of negative dispersion with chirped fiber Bragg gratings. The pulse energies and widths generated with both types of soliton laser are found to scale with the square root of the cavity dispersion. Kerr mode locking requires pulses with an approximately three times higher nonlinear phase shift in the cavity than carrier mode locking, which leads to the generation of slightly shorter pulses with as much as seven times higher pulse energies at the mode-locking threshold.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

There is an increasing call for applications which use a mixture of batteries. These hybrid battery solutions may contain different battery types for example; using second life ex-transportation batteries in grid support applications or a combination of high power, low energy and low power, high energy batteries to meet multiple energy requirements or even the same battery types but under different states of health for example, being able to hot swap out a battery when it has failed in an application without changing all the batteries and ending up with batteries with different performances, capacities and impedances. These types of applications typically use multi-modular converters to allow hot swapping to take place without affecting the overall performance of the system. A key element of the control is how the different battery performance characteristics may be taken into account and the how the power is then shared among the different batteries in line with their performance. This paper proposes a control strategy which allows the power in the batteries to be effectively distributed even under capacity fade conditions using adaptive power sharing strategy. This strategy is then validated against a system of three different battery types connected to a multi-modular converter both with and without capacity fade mechanisms in place.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The innovation of optical frequency combs (OFCs) generated in passive mode-locked lasers has provided astronomy with unprecedented accuracy for wavelength calibration in high-resolution spectroscopy in research areas such as the discovery of exoplanets or the measurement of fundamental constants. The unique properties of OCFs, namely a highly dense spectrum of uniformly spaced emission lines of nearly equal intensity over the nominal wavelength range, is not only beneficial for high-resolution spectroscopy. Also in the low- to medium-resolution domain, the OFCs hold the promise to revolutionise the calibration techniques. Here, we present a novel method for generation of OFCs. As opposed to the mode-locked laser-based approach that can be complex, costly, and difficult to stabilise, we propose an all optical fibre-based system that is simple, compact, stable, and low-cost. Our system consists of three optical fibres where the first one is a conventional single-mode fibre, the second one is an erbium-doped fibre and the third one is a highly nonlinear low-dispersion fibre. The system is pumped by two equally intense continuous-wave (CW) lasers. To be able to control the quality and the bandwidth of the OFCs, it is crucial to understand how optical solitons arise out of the initial modulated CW field in the first fibre. Here, we numerically investigate the pulse evolution in the first fibre using the technique of the solitons radiation beat analysis. Having applied this technique, we realised that formation of higherorder solitons is supported in the low-energy region, whereas, in the high-energy region, Kuznetsov-Ma solitons appear.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Sustainable development requires combining economic viability with energy and environment conservation and ensuring social benefits. It is conceptualized that for designing a micro industry for sustainable rural industrialization, all these aspects should be integrated right up front. The concept includes; (a) utilization of local produce for value addition in a cluster of villages and enhancing income of the target population; (b) use of renewable energy and total utilization of energy generated by co and trigeneration (combining electric power production with heat utilization for heating and cooling); (c) conservation of water and complete recycling of effluents; (d) total utilization of all wastes for achieving closure towards a zero waste system. Enhanced economic viability and sustainability is achieved by integration of appropriate technologies into the industrial complex. To prove the concept, a model Micro Industrial Complex (MIC) has been set up in a semi arid desert region in Rajasthan, India at village Malunga in Jodhpur district. A biomass powered boiler and steam turbine system is used to generate 100-200 KVA of electric power and high energy steam for heating and cooling processes downstream. The unique feature of the equipment is a 100-150 kW back-pressure steam turbine, utilizing 3-4 tph (tonnes per hour) steam, developed by M/s IB Turbo. The biomass boiler raises steam at about 20 barg 3 tph, which is passed through a turbine to yield about 150 kW of electrical power. The steam let out at a back pressure of 1-3 barg has high exergy and this is passed on as thermal energy (about 2 MW), for use in various applications depending on the local produce and resources. The biomass fuel requirement for the boiler is 0.5-0.75 tph depending on its calorific value. In the current model, the electricity produced is used for running an oil expeller to extract castor oil and the castor cake is used as fuel in the boiler. The steam is used in a Multi Effect Distillation (MED) unit for drinking water production and in a Vapour Absorption Machine (VAM) for cooling, for banana ripening application. Additional steam is available for extraction of herbs such as mint and processing local vegetables. In this paper, we discuss the financial and economic viability of the system and show how the energy, water and materials are completely recycled and how the benefits are directed to the weaker sections of the community.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Energy efficiency is one of the most important performances of a wireless sensor network. In this paper, we show that choosing a proper transmission scheme given the channel and network conditions can ensure a high energy performance in different transmission environments. Based on the energy models we established for both cooperative and non-cooperative communications, the efficiency in terms of energy consumption per bit for different transmission schemes is investigated. It is shown that cooperative transmission schemes can outperform non-cooperative schemes in energy efficiency in severe channel conditions and when the source-destination distance is in a medium or long range. But the latter is more energy efficient than the former for short-range transmission. For cooperative transmission schemes, the number of transmission branches and the number of relays per branch can also be properly selected to adapt to the variations of the transmission environment, so that the total energy consumption can be minimized.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Modern high-power, pulsed lasers are driven by strong intracavity fluctuations. Critical in driving the intracavity dynamics is the nontrivial phase profiles generated and their periodic modification from either nonlinear mode-coupling, spectral filtering or dispersion management. Understanding the theoretical origins of the intracavity fluctuations helps guide the design, optimization and construction of efficient, high-power and high-energy pulsed laser cavities. Three specific mode-locking component are presented for enhancing laser energy: waveguide arrays, spectral filtering and dispersion management. Each component drives a strong intracavity dynamics that is captured through various modeling and analytic techniques.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Integrated on-chip optical platforms enable high performance in applications of high-speed all-optical or electro-optical switching, wide-range multi-wavelength on-chip lasing for communication, and lab-on-chip optical sensing. Integrated optical resonators with high quality factor are a fundamental component in these applications. Periodic photonic structures (photonic crystals) exhibit a photonic band gap, which can be used to manipulate photons in a way similar to the control of electrons in semiconductor circuits. This makes it possible to create structures with radically improved optical properties. Compared to silicon, polymers offer a potentially inexpensive material platform with ease of fabrication at low temperatures and a wide range of material properties when doped with nanocrystals and other molecules. In this research work, several polymer periodic photonic structures are proposed and investigated to improve optical confinement and optical sensing. We developed a fast numerical method for calculating the quality factor of a photonic crystal slab (PhCS) cavity. The calculation is implemented via a 2D-FDTD method followed by a post-process for cavity surface energy radiation loss. Computational time is saved and good accuracy is demonstrated compared to other published methods. Also, we proposed a novel concept of slot-PhCS which enhanced the energy density 20 times compared to traditional PhCS. It combines both advantages of the slot waveguide and photonic crystal to localize the high energy density in the low index material. This property could increase the interaction between light and material embedded with nanoparticles like quantum dots for active device development. We also demonstrated a wide range bandgap based on a one dimensional waveguide distributed Bragg reflector with high coupling to optical waveguides enabling it to be easily integrated with other optical components on the chip. A flexible polymer (SU8) grating waveguide is proposed as a force sensor. The proposed sensor can monitor nN range forces through its spectral shift. Finally, quantum dot - doped SU8 polymer structures are demonstrated by optimizing spin coating and UV exposure. Clear patterns with high emission spectra proved the compatibility of the fabrication process for applications in optical amplification and lasing.