821 resultados para Grounded theory method
Resumo:
We develop an abstract extrapolation theory for the real interpolation method that covers and improves the most recent versions of the celebrated theorems of Yano and Zygmund. As a consequence of our method, we give new endpoint estimates of the embedding Sobolev theorem for an arbitrary domain Omega
Resumo:
A new aggregation method for decision making is presented by using induced aggregation operators and the index of maximum and minimum level. Its main advantage is that it can assess complex reordering processes in the aggregation that represent complex attitudinal characters of the decision maker such as psychological or personal factors. A wide range of properties and particular cases of this new approach are studied. A further generalization by using hybrid averages and immediate weights is also presented. The key issue in this approach against the previous model is that we can use the weighted average and the ordered weighted average in the same formulation. Thus, we are able to consider the subjective attitude and the degree of optimism of the decision maker in the decision process. The paper ends with an application in a decision making problem based on the use of the assignment theory.
Resumo:
In This Paper Several Additional Gmm Specification Tests Are Studied. a First Test Is a Chow-Type Test for Structural Parameter Stability of Gmm Estimates. the Test Is Inspired by the Fact That \"Taste and Technology\" Parameters Are Uncovered. the Second Set of Specification Tests Are Var Encompassing Tests. It Is Assumed That the Dgp Has a Finite Var Representation. the Moment Restrictions Which Are Suggested by Economic Theory and Exploited in the Gmm Procedure Represent One Possible Characterization of the Dgp. the Var Is a Different But Compatible Characterization of the Same Dgp. the Idea of the Var Encompassing Tests Is to Compare Parameter Estimates of the Euler Conditions and Var Representations of the Dgp Obtained Separately with Parameter Estimates of the Euler Conditions and Var Representations Obtained Jointly. There Are Several Ways to Construct Joint Systems Which Are Discussed in the Paper. Several Applications Are Also Discussed.
Resumo:
During recent years, the theory of differential inequalities has been extensively used to discuss singular perturbation problems and method of lines to partial differential equations. The present thesis deals with some differential inequality theorems and their applications to singularly perturbed initial value problems, boundary value problems for ordinary differential equations in Banach space and initial boundary value problems for parabolic differential equations. The method of lines to parabolic and elliptic differential equations are also dealt The thesis is organised into nine chapters
Resumo:
The assessment of building energy efficiency is one of the most effective measures for reducing building energy consumption. This paper proposes a holistic method (HMEEB) for assessing and certifying building energy efficiency based on the D-S (Dempster-Shafer) theory of evidence and the Evidential Reasoning (ER) approach. HMEEB has three main features: (i) it provides both a method to assess and certify building energy efficiency, and exists as an analytical tool to identify improvement opportunities; (ii) it combines a wealth of information on building energy efficiency assessment, including identification of indicators and a weighting mechanism; and (iii) it provides a method to identify and deal with inherent uncertainties within the assessment procedure. This paper demonstrates the robustness, flexibility and effectiveness of the proposed method, using two examples to assess the energy efficiency of two residential buildings, both located in the ‘Hot Summer and Cold Winter’ zone in China. The proposed certification method provides detailed recommendations for policymakers in the context of carbon emission reduction targets and promoting energy efficiency in the built environment. The method is transferable to other countries and regions, using an indicator weighting system to modify local climatic, economic and social factors.
Resumo:
This paper explores the social theories implicit in system dynamics (SD) practice. Groupings of SD practice are observed in different parts of a framework for studying social theories. Most are seen to be located within `functionalist sociology'. To account for the remainder, two new forms of practice are discussed, each related to a different paradigm. Three competing conclusions are then offered: 1. The implicit assumption that SD is grounded in functionalist sociology is correct and should be made explicit. 2. Forrester's ideas operate at the level of method not social theory so SD, though not wedded to a particular social theoretic paradigm, can be re-crafted for use within different paradigms. 3. SD is consistent with social theories which dissolve the individual/society divide by taking a dialectical, or feedback, stance. It can therefore bring a formal modelling approach to the `agency/structure' debate within social theory and so bring SD into the heart of social science. The last conclusion is strongly recommended.
Resumo:
We discuss the generalized eigenvalue problem for computing energies and matrix elements in lattice gauge theory, including effective theories such as HQET. It is analyzed how the extracted effective energies and matrix elements converge when the time separations are made large. This suggests a particularly efficient application of the method for which we can prove that corrections vanish asymptotically as exp(-(E(N+1) - E(n))t). The gap E(N+1) - E(n) can be made large by increasing the number N of interpolating fields in the correlation matrix. We also show how excited state matrix elements can be extracted such that contaminations from all other states disappear exponentially in time. As a demonstration we present numerical results for the extraction of ground state and excited B-meson masses and decay constants in static approximation and to order 1/m(b) in HQET.
Resumo:
The paper presents a methodology to model three-dimensional reinforced concrete members by means of embedded discontinuity elements based on the Continuum Strong Discontinuous Approach (CSDA). Mixture theory concepts are used to model reinforced concrete as a 31) composite material constituted of concrete with long fibers (rebars) bundles oriented in different directions embedded in it. The effects of the rebars are modeled by phenomenological constitutive models devised to reproduce the axial non-linear behavior, as well as the bond-slip and dowel action. The paper presents the constitutive models assumed for the components and the compatibility conditions chosen to constitute the composite. Numerical analyses of existing experimental reinforced concrete members are presented, illustrating the applicability of the proposed methodology.
Resumo:
Many years ago Zel'dovich showed how the Lagrange condition in the theory of differential equations can be utilized in the perturbation theory of quantum mechanics. Zel'dovich's method enables us to circumvent the summation over intermediate states. As compared with other similar methods, in particular the logarithmic perturbation expansion method, we emphasize that this relatively unknown method of Zel'dovich has a remarkable advantage in dealing with excited stares. That is, the ground and excited states can all be treated in the same way. The nodes of the unperturbed wavefunction do not give rise to any complication.
Resumo:
The Monge–Ampère (MA) equation arising in illumination design is highly nonlinear so that the convergence of the MA method is strongly determined by the initial design. We address the initial design of the MA method in this paper with the L2 Monge-Kantorovich (LMK) theory, and introduce an efficient approach for finding the optimal mapping of the LMK problem. Three examples, including the beam shaping of collimated beam and point light source, are given to illustrate the potential benefits of the LMK theory in the initial design. The results show the MA method converges more stably and faster with the application of the LMK theory in the initial design.
Resumo:
Bibliography: p. [141]-214.