965 resultados para Givens rotation
Resumo:
Several N,N -dipyridyl- and N-phenyl-N -pyridyl-thioureas were examined in different solvents at various temperatures by 1H NMR in order to study their conformational properties. The influence of concentration and the methyl substituent in the pyridine ring on the chemical shifts of the NH and pyridine groups was investigated. The observed chemical shifts are analysed in terms of the conformational properties of the molecules. Free energy barriers to the internal rotation about the C N bonds have been determined. Infrared spectra have been measured to supplement the NMR studies. Intramolecular hydrogen bonding played a major role in the preferred conformation of pyridylthioureas. The data further revealed an interesting dynamic exchange phenomenon occurring in symmetric N,N -dipyridylthioureas between two intramolecularly hydrogen bonded conformers.
Time dependent rotational flow of a viscous fluid over an infinite porous disk with a magnetic field
Resumo:
Both the semi-similar and self-similar flows due to a viscous fluid rotating with time dependent angular velocity over a porous disk of large radius at rest with or without a magnetic field are investigated. For the self-similar case the resulting equations for the suction and no mass transfer cases are solved numerically by quasilinearization method whereas for the semi-similar case and injection in the self-similar case an implicit finite difference method with Newton's linearization is employed. For rapid deceleration of fluid and for moderate suction in the case of self-similar flow there exists a layer of fluid, close to the disk surface where the sense of rotation is opposite to that of the fluid rotating far away. The velocity profiles in the absence of magnetic field are found to be oscillatory except for suction. For the accelerating freestream, (semi-similar flow) the effect of time is to reduce the amplitude of the oscillations of the velocity components. On the other hand the effect of time for the oscillating case is just the opposite.
Resumo:
Heat transfer in a MHD flow between two infinite eccentric disks rotating with different speeds is considered when the plates are maintained at different temperatures. The results for the corresponding nonmagnetic case presented wrongly by Banerjee and Borkakati [7] are corrected. It is observed that the eccentric rotation reduces the heat transfer on the disks.
Resumo:
Thioacetamide has a dipole moment substantially higher than the vector sum of the normal characteristic moments of its constituent bonds. However, the effect can reasonably be accounted for on the scheme of alterations in charge distribution and hence of bond moments proposed by Smith, Ree, Magee and Eyring. The same is probably true for chloroacetamide even though the problem of rotation about the C-C single bond renders the conclusion less certain. For cyanoacetamide, the observed moment cannot be accounted for satisfactorily on this basis.
Resumo:
The atomic hydrogen gas (H I) disk in the outer region (beyond similar to 10 kpc from the center) of Milky Way can provide valuable information about the structure of the dark matter halo. The recent three-dimensional thickness map of the outer H I disk from the all sky 21 cm line Leiden/Argentine/Bonn survey, gives us a unique opportunity to investigate the structure of the dark matter halo of Milky Way in great detail. A striking feature of this new survey is the north-south (N-S) asymmetry in the thickness map of the atomic hydrogen gas. Assuming vertical hydrostatic equilibrium under the total potential of the Galaxy, we derive the model thickness map of the H I gas. We show that simple axisymmetric halo models, such as softened isothermal halo (producing a flat rotation curve with V-c similar to 220 km s(-1)) or any halo with density falling faster than the isothermal one, are not able to explain the observed radial variation of the gas thickness. We also show that such axisymmetric halos along with different H I velocity dispersion in the two halves, cannot explain the observed asymmetry in the thickness map. Amongst the nonaxisymmetric models, it is shown that a purely lopsided (m = 1, first harmonic) dark matter halo with reasonable H I velocity dispersion fails to explain the N-S asymmetry satisfactorily. However, we show that by superposing a second harmonic (m = 2) out of phase onto a purely lopsided halo, e. g., our best fit and more acceptable model A (with parameters epsilon(1)(h) = 0.2, epsilon(2)(h) = 0.18, and sigma(H I) = 8.5 km s(-1)) can provide an excellent fit to the observation and reproduce the N-S asymmetry naturally. The emerging picture of the asymmetric dark matter halo is supported by the. cold dark matter halos formed in the cosmological N-body simulation.
Resumo:
Soil nitrogen (N) supply in the Vertosols of southern Queensland, Australia has steadily declined as a result of long-term cereal cropping without N fertiliser application or rotations with legumes. Nitrogen-fixing legumes such as lucerne may enhance soil N supply and therefore could be used in lucerne-wheat rotations. However, lucerne leys in this subtropical environment can create a soil moisture deficit, which may persist for a number of seasons. Therefore, we evaluated the effect of varying the duration of a lucerne ley (for up to 4 years) on soil N increase, N supply to wheat, soil water changes, wheat yields and wheat protein on a fertility-depleted Vertosol in a field experiment between 1989 and 1996 at Warra (26degrees 47'S, 150degrees53'E), southern Queensland. The experiment consisted of a wheat-wheat rotation, and 8 treatments of lucerne leys starting in 1989 (phase 1) or 1990 (phase 2) for 1,2,3 or 4 years duration, followed by wheat cropping. Lucerne DM yield and N yield increased with increasing duration of lucerne leys. Soil N increased over time following 2 years of lucerne but there was no further significant increase after 3 or 4 years of lucerne ley. Soil nitrate concentrations increased significantly with all lucerne leys and moved progressively downward in the soil profile from 1992 to 1995. Soil water, especially at 0.9-1.2 m depth, remained significantly lower for the next 3 years after the termination of the 4 year lucerne ley than under continuous wheat. No significant increase in wheat yields was observed from 1992 to 1995, irrespective of the lucerne ley. However, wheat grain protein concentrations were significantly higher under lucerne-wheat than under wheat wheat rotations for 3-5 years. The lucerne yield and soil water and nitrate-N concentrations were satisfactorily simulated with the APSIM model. Although significant N accretion occurred in the soil following lucerne leys, in drier seasons, recharge of the drier soil profile following long duration lucerne occurred after 3 years. Consequently, 3- and 4-year lucerne-wheat rotations resulted in more variable wheat yields than wheat-wheat rotations in this region. The remaining challenge in using lucerne-wheat rotations is balancing the N accretion benefits with plant-available water deficits, which are most likely to occur in the highly variable rainfall conditions of this region.
Resumo:
Experimental results pertaining to the initiation, dynamics and mechanism of cavitation erosion on poly(methyl methacrylate) specimens tested in a rotating disk device are described in detail. Erosion normally starts at the location nearest to the center of rotation (CR). As the exposure time to cavitation increases, additional erosion areas or sites appear away from the CR and secondary erosion (induced by eroded pits) spreads upstream and merges with the main pit. The microcracks increase in density towards the end of the incubation period and transform into macrocracks in most cases. A study of light optical photographs and scanning electron micrographs of the eroded area shows that material particles are removed from the network of cracks because of crack joining and pits indicate particle debris. Optical degradation (loss of transmittance) is observed to be greater on the back of the specimen than on the front.
Resumo:
A decision support system has been developed in Queensland to evaluate how changes in silvicultural regimes affect wood quality, and specifically the graded recovery of structural timber. Models of tree growth, branch architecture and wood properties were developed from data collected in routine Caribbean pine plantations and specific silvicultural experiments. These models were incorporated in software that simulates the conversion of standing trees into logs, and the logs into boards, and generates detailed data on knot location and basic density distribution. The structural grade of each board was determined by simulating the machine stress-grading process, and the predicted graded recovery provided an indicator of wood value. The decision support system improves the basis of decision-making by simulating the performance of elite genetic material under specified silvicultural regimes and by predicting links between wood quality and general stand attributes such as stocking and length of rotation.
Resumo:
Rail track undergoes complex loading patterns under moving traffic conditions compared to roads due to its continued and discontinued multi-layered structure, including rail, sleepers, ballast layer, sub-ballast layer, and subgrade. Particle size distributions (PSDs) of ballast, subballast, and subgrade layers can be critical in cyclic plastic deformation of rail track under moving traffic on frequent track degradation of rail tracks, especially at bridge transition zones. Conventional test approaches: static shear and cyclic single-point load tests are however unable to replicate actual loading patterns of moving train. Multi-ring shear apparatus; a new type of torsional simple shear apparatus, which can reproduce moving traffic conditions, was used in this study to investigate influence of particle size distribution of rail track layers on cyclic plastic deformation. Three particle size distributions, using glass beads were examined under different loading patterns: cyclic sin-gle-point load, and cyclic moving wheel load to evaluate cyclic plastic deformation of rail track under different loading methods. The results of these tests suggest that particle size distributions of rail track structural layers have significant impacts on cyclic plastic deformation under moving train load. Further, the limitations in con-ventional test methods used in laboratories to estimate the plastic deformation of rail track materials lead to underestimate the plastic deformation of rail tracks.
Resumo:
Cyclic plastic deformation of subgrade and other engineered layers is generally not taken into account in the design of railway bridge transition zones, although the plastic deformation is the governing factor of frequent track deterioration. Actual stress behavior of fine grained subgrade/embankment layers under train traffic is, however, difficult to replicate using the conventional laboratory test apparatus and techniques. A new type of torsional simple shear apparatus, known as multi-ring shear apparatus, was therefore developed to evaluate the actual stress state and the corresponding cyclic plastic deformation characteristics of subgrade materials under moving wheel load conditions. Multi-ring shear test results has been validated using a theoretical model test results; the capability of the multi-ring shear apparatus for replicating the cyclic plastic deformation characteristics of subgrade under moving train wheel load conditions is thus established. This paper describes the effects of principal stress rotation (PSR) of the subgrade materials to the cyclic plastic deformation in a railroad and impacts of testing methods in evaluating the influence of principal stress rotation to the track deterioration of rail track.
Resumo:
The steady flow of an incompressible, viscous, electrically conducting fluid between two parallel, infinite, insulated disks rotating with different angular velocities about two noncoincident axes has been investigated; under the application of a uniform magnetic field in the axial direction. The solutions for the symmetric and asymmetric velocities are presented. The interesting feature arising due to the magnetic field is that in the central region the flow attains a uniform rotation with mean angular velocity at all rotation speeds for sufficiently large Hartmann number. In this case the flow adjusts to the rotational velocities of the disks mainly in the boundary layers near the disks. The forces on the disks are found to increase due to the presence of the applied magnetic field.
Resumo:
Growers working together have proven to be a successful method for improving the utilization of farm resources and accelerating the adoption of the Sugar Yield Decline Joint Venture principles (SYDJV). The Pinnacle Precision Farming Group was formed in 2004 with the aim to bring together the ideas, knowledge and resources of growers in the Herbert region. Along with their common interest in controlled traffic, minimal tillage and crop rotations, the grower group utilize a farm machinery contractor to provide some of their major farming operations. This paper provides an insight into the changes made by the Pinnacle Precision Farming Group and their journey to adopt the new farming system practices. This paper also details the changes made by the group machinery contractor and a comparison of the old and new farming systems used by a group member. A focus point of the document is the impact of the new farming system on the economic, social and environmental components of the farming business. Analysis of the new farming system with a legume crop rotation revealed an increase in the farm gross margin by AU$22 024 and, in addition, a reduction in tractor operation time by 38% across the whole farm. This represents a return on marginal capital of 14.68 times the original capital outlay required by the group member. Using the new farming system without a legume crop will still improve the group members whole of farm gross margin by AU$6 839 and reduce tractor operation time by 43% across the whole farm. The Pinnacle Precision Farming group recognize the need to continually improve their farming businesses and believe that the new farming system principles are critical for the long term viability of the industry. [U$1 = AU$1.19].
Resumo:
Seven hardwood species were tested as underplants under Pinus elliottii plantations on the coastal lowlands of south-east Queensland. The species tested were: Flindersia brayleyana (F. Muell) (Queensland maple), F. australis (R. Br.), (crow's ash), Swietenia macrophylla (King) (American mahogany), Grevillea robusta (A. cunn) (southern silky oak), Elaeocarpus grandis (F. Muell) (silver quandong), F. ifflaiana (F. Meull) (Cairns hickory) and Ceratopetalum apetalum (D. Don) (coachwood). Most species (except E. grandis) established successfully but slowly. Underplants suffered 9-16% mortality during thinning of the overstorey. By 2004 when aged c. 38 years, four underplanted species; F. brayleyana, S. macrophylla, F. ifflaiana and E. grandis, had attained predominant heights of 20 m and mean diameter at breast height of 25 cm or better. The presence of underplants increased total site productivity by up to 23% and did not have any detrimental effect on the development of the overwood.This experiment has demonstrated that some rainforest species will survive and grow healthily as underplants in exotic pine plantations plus produce small merchantable logs within a 38 year rotation. The results also indicated the importance of correct species selection if an underplanting option is to be pursued as some species have been a complete failure (notably G. robusta).
Resumo:
Valinomycin, an ionophore of considerable interest for its ion selectivity, and its K+, Mg2+, Ba2+, and Ca2+ complexes were studied by Raman spectroscopy. Each complex has a characteristic spectrum which differs from that of uncomplexed valinomycin, suggesting several distinct structures for each of the metal-valinomycin complexes. The biologically active potassium complex shows the most significant changes in its spectrum, especially in the intensity of the symmetric C---H stretching vibration of CH3 and the convergence of the two ester carbonyl stretching vibration bands into one complex formation. These results are due to the unique orientation of the ester carbonyl groups toward the caged potassium ion and the resulting more free rotation of isopropyl side chains. The divalent cation-valinomycin complexes examined showed spectra which differed in each case uniquely from both valinomycin and its complex with potassium.
Resumo:
The variable temperature 1H and 13C NMR behaviour of two trisubstituted thioureas, namely N,N-diethyl N'-(2-thiazolyl) thiourea and N,N-diethyl N'-(3-pyridyl)thiourea has been investigated. The barrier to rotation of the diethylamino group has been obtained.