988 resultados para Geology, Sratigraphic -- Holocene
Resumo:
Fire regimes have changed during the Holocene due to changes in climate, vegetation, and in human practices. Here, we hypothesise that changes in fire regime may have affected the global CO2 concentration in the atmosphere through the Holocene. Our data are based on quantitative reconstructions of biomass burning deduced from stratified charcoal records from Europe, and South-, Central- and North America, and Oceania to test the fire-carbon release hypothesis. In Europe the significant increase of fire activity is dated ≈6000 cal. yr ago. In north-eastern North America burning activity was greatest before 7500 years ago, very low between 7500–3000 years, and has been increasing since 3000 years ago. In tropical America, the pattern is more complex and apparently latitudinally zonal. Maximum burning occurred in the southern Amazon basin and in Central America during the middle Holocene, and during the last 2000 years in the northern Amazon basin. In Oceania, biomass burning has decreased since a maximum 5000 years ago. Biomass burning has broadly increased in the Northern and Southern hemispheres throughout the second half of the Holocene associated with changes in climate and human practices. Global fire indices parallel the increase of atmospheric CO2 concentration recorded in Antarctic ice cores. Future issues on carbon dynamics relatively to biomass burning are discussed to improve the quantitative reconstructions.
Resumo:
This study presents a comprehensive assessment of high-resolution Southern Hemisphere (SH) paleoarchives covering the last 2000 years. We identified 174 monthly to annually resolved climate proxy (tree ring, coral, ice core, documentary, speleothem and sedimentary) records from the Hemisphere. We assess the interannual and decadal sensitivity of each proxy record to large-scale circulation indices from the Pacific, Indian and Southern Ocean regions over the twentieth century. We then analyse the potential of this newly expanded palaeoclimate network to collectively represent predictands (sea surface temperature, sea level pressure, surface air temperature and precipitation) commonly used in climate reconstructions. The key dynamical centres-of-action of the equatorial Indo-Pacific are well captured by the palaeoclimate network, indicating that there is considerable reconstruction potential in this region, particularly in the post AD 1600 period when a number of long coral records are available. Current spatiotemporal gaps in data coverage and regions where significant potential for future proxy collection exists are discussed. We then highlight the need for new and extended records from key dynamical regions of the Southern Hemisphere. Although large-scale climate field reconstructions for the SH are in their infancy, we report that excellent progress in the development of regional proxies now makes plausible estimates of continental- to hemispheric-scale climate variations possible.
Resumo:
Adaptation potential of forests to rapid climatic changes can be assessed from vegetation dynamics during past climatic changes as preserved in fossil pollen data. However, pollen data reflect the integrated effects of climate and biotic processes, such as establishment, survival, competition, and migration. To disentangle these processes, we compared an annually laminated late Würm and Holocene pollen record from the Central Swiss Plateau with simulations of a dynamic forest patch model. All input data used in the simulations were largely independent from pollen data; i.e. the presented analysis is non-circular. Temperature and precipitation scenarios were based on reconstructions from pollen-independent sources. The earliest arrival times of the species at the study site after the last glacial were inferred from pollen maps. We ran a series of simulations under different combinations of climate and immigration scenarios. In addition, the sensitivity of the simulated presence/absence of four major species to changes in the climate scenario was examined. The pattern of the pollen record could partly be explained by the used climate scenario, mostly by temperature. However, some features, in particular the absence of most species during the late Würm could only be simulated if the winter temperature anomalies of the used scenario were decreased considerably. Consequently, we had to assume in the simulations, that most species immigrated during or after the Younger Dryas (12 000 years BP), Abies and Fagus even later. Given the timing of tree species immigration, the vegetation was in equilibrium with climate during long periods, but responded with lags at the time-scale of centuries to millennia caused by a secondary succession after rapid climatic changes such as at the end of Younger Dryas, or immigration of dominant taxa. Climate influenced the tree taxa both directly and indirectly by changing inter-specific competition. We concluded, that also during the present fast climatic change, species migration might be an important process, particularly if geographic barriers, such as the Alps are in the migrational path.
Resumo:
In order to find out which factors influenced the forest dynamics in northern Italy during the Holocene, a palaeoecological approach involving pollen analysis was combined with ecosystem modelling. The dynamic and distribution based forest model DisCForm was run with different input scenarios for climate, species immigration, fire, and human impact and the similarity of the simulations with the original pollen record was assessed. From the comparisons of the model output and the pollen core, it appears that immigration was most important in the first part of the Holocene, and that fire and human activity had a major influence in the second half. Species not well represented in the simulation outputs are species with a higher abundance in the past than today (Corylus), with their habitat in riparian forests (Alnus) or with a strong response to human impact (Castanea).
Resumo:
Colorimetric measurements of alkaline extracts from two Swiss peat cores have provided a complete 14500-year-long record of peat humification, a proxy of effective precipitation. Peat from the cold Younger Dryas (11050–9550 cal. bc) was well preserved despite low levels of precipitation. A particularly dry period, peaking at c. 7100 cal. bc, is indicated by well-decomposed peat. Peat from c. 6750–4250 cal. bc shows a low degree of decomposition, indicating a wet bog surface despite relatively warm temperatures and therefore indicating high levels of precipitation. A sharp transition to higher levels of decomposition c. 4450–3750 cal. bc indicates a major transition to a drier bog surface. Subsequently, peat humification generally decreases towards the end of the deeper profile (c. cal. ad 1050), indicating a gradual return to wetter conditions. This gradual decrease is punctuated by periods of particularly low humification which appear to be due to shifts to higher levels of effective precipitation from c. 2500 to 1350 cal. bc, c. 1050 to 550 cal. bc, centered around 150 cal. bc, and from c. cal. ad 550 onwards. Anthropogenic influences appear to have affected peat humification at the site at least since the Middle Ages. This study indicates that humification in colder regions/time periods could be more affected by temperature than precipitation and vice versa.
Resumo:
Three well-dated pollen diagrams from 1985 m, 2050 m, and at the tree line at 2150 m asl show the vegetational succession in the central Altai Mountains since 16 cal ka BP. Pioneer vegetation after deglaciation was recorded first at the lowest site. Subsequently, dense dry steppe vegetation developed coincident with the change from silt to organic sediments at the two lower sites, but silt lasted longer at the highest site, indicating the persistence of bare ground there. Forests of Pinus sibirica, Pinus sylvestris, Picea obovata, Larix sibirica, Abies sibirica, and Betula pendula started to develop about 12 cal ka BP with the change to a warmer and wetter climate at the beginning of the Holocene. Results indicate that the timberline did not rise above the highest site. Mesophilous dark-coniferous forests were fully developed by 9.5 cal ka BP. The role of Abies and Picea decreased by about 7.5 cal ka BP suggesting cooler climate, after which the forests changed little until today. The vegetational development in this portion of the central Altai Mountains is compatible with that described in neighbouring areas of the Altai, southern Siberia, Mongolia, and Kazakhstan.
Resumo:
Only few studies documenting the vegetation history of the Llanos de Moxos, one of the largest seasonally flooded wetland areas in South America, are available and little is known about the environmental impact of pre-Columbian settlements. We use radiocarbon-dated terrestrial plant macrofossils to establish a sound chronology and palynological analyses to reconstruct the vegetation and fire history of the Lago Rogaguado area. The sedimentary pollen and spore record suggests that wetland and wooded savannah (Cerrado) environments occurred around the lake between 8100 and 5800 cal BP. Fire activity was high during this period and was probably connected to the dry Cerrado environments. The pollen evidence suggests early plant cultivation (Zea mays, Annonaceae and Cucurbitaceae) from 6500 cal BP onwards, which is significantly earlier than hitherto assumed for Amazonia. Gallery forests expanded after 5800 cal BP, when fire activity strongly declined. Forest expansion intensified around 2800 cal BP and continued until 2000 cal BP, when forest cover reached its maximum and fire activity its minimum. The late-Holocene forest expansion to the south and the decrease of fire activity may have resulted from a climatic shift to moister conditions (possibly a shorter dry season). New crops (e.g. Avena-type) or adventive plants (e.g. Rumex acetosella-type) document the impact of European economies after ca. 500 cal BP. Land use intensity remained rather stable over the most recent centuries, arguing against a collapse of settlements in response to the arrival of Europeans, as reconstructed from other Amazonian pollen records.
Resumo:
For several centuries in early Medieval times the climate system was relatively unperturbed by natural forcing factors, resulting in a unique period of climate stability. We argue that this represents a reference state for the Common Era, well before anthropogenic forcing became the dominant driver of the climate system.
Resumo:
Oxygen isotope records show a major climatic reversal at 8.2 ka in Greenland and Europe. Annually laminated sediments from two lakes in Switzerland and Germany were sampled contiguously to assess the response of European vegetation to climate change ca. 8.2 ka with time resolution and precision comparable to those of the Greenland ice cores. The pollen assemblages show pronounced and immediate responses (0–20 yr) of terrestrial vegetation to the climatic change at 8.2 ka. A sudden collapse of Corylus avellana (hazel) was accompanied by the rapid expansion of Pinus (pine), Betula (birch), and Tilia (linden), and by the invasion of Fagus silvatica (beech) and Abies alba (fir). Vegetational changes suggest that climatic cooling reduced drought stress, allowing more drought-sensitive and taller growing species to out-compete Corylus avellana by forming denser forest canopies. Climate cooling at 8.2 ka and the immediate reorganization of terrestrial ecosystems has gone unrecognized by previous pollen studies. On the basis of our data we conclude that the early Holocene high abundance of C. avellana in Europe was climatically caused, and we question the conventional opinion that postglacial expansions of F. silvatica and A. alba were controlled by low migration rates rather than by climate. The close connection between climatic change and vegetational response at a subcontinental scale implies that forecasted global warming may trigger rapid collapses, expansions, and invasions of tree species.
Resumo:
Lake sediments and pollen, spores and algae from the high-elevation endorheic Laguna Miscanti (22°45′S, 67°45′W, 4140 m a.s.l., 13.5 km2 water surface, 10 m deep) in the Atacama Desert of northern Chile provide information about abrupt and high amplitude changes in effective moisture. Although the lack of terrestrial organic macrofossils and the presence of a significant 14C reservoir effect make radiocarbon dating of lake sediments very difficult, we propose the following palaeoenvironmental history. An initial shallow freshwater lake (ca. 22,000 14C years BP) disappeared during the extremely dry conditions of the Last Glacial Maximum (LGM; 18,000 14C years BP). That section is devoid of pollen. The late-glacial lake transgression started around 12,000 14C years BP, peaked in two phases between ca. 11,000 and <9000 14C years BP, and terminated around 8000 14C years BP. Effective moisture increased more than three times compared to modern conditions (∼200 mm precipitation), and a relatively dense terrestrial vegetation was established. Very shallow hypersaline lacustrine conditions prevailed during the mid-Holocene until ca. 3600 14C years BP. However, numerous drying and wetting cycles suggest frequent changes in moisture, maybe even individual storms during the mid-Holocene. After several humid spells, modern conditions were reached at ca. 3000 14C years BP. Comparison between limnogeological data and pollen of terrestrial plants suggest century-scale response lags. Relatively constant concentrations of long-distance transported pollen from lowlands east of the Andes suggest similar atmospheric circulation patterns (mainly tropical summer rainfall) throughout the entire period of time. These findings compare favorably with other regional paleoenvironmental data.
Resumo:
Information on how species distributions and ecosystem services are impacted by anthropogenic climate change is important for adaptation planning. Palaeo data suggest that Abies alba formed forests under significantly warmer-than-present conditions in Europe and might be a native substitute for widespread drought-sensitive temperate and boreal tree species such as beech (Fagus sylvatica) and spruce (Picea abies) under future global warming conditions. Here, we combine pollen and macrofossil data, modern observations, and results from transient simulations with the LPX-Bern dynamic global vegetation model to assess past and future distributions of A. alba in Europe. LPX-Bern is forced with climate anomalies from a run over the past 21 000 years with the Community Earth System Model, modern climatology, and with 21st-century multimodel ensemble results for the high-emission RCP8.5 and the stringent mitigation RCP2.6 pathway. The simulated distribution for present climate encompasses the modern range of A. alba, with the model exceeding the present distribution in north-western and southern Europe. Mid-Holocene pollen data and model results agree for southern Europe, suggesting that at present, human impacts suppress the distribution in southern Europe. Pollen and model results both show range expansion starting during the Bølling–Allerød warm period, interrupted by the Younger Dryas cold, and resuming during the Holocene. The distribution of A. alba expands to the north-east in all future scenarios, whereas the potential (currently unrealized) range would be substantially reduced in southern Europe under RCP8.5. A. alba maintains its current range in central Europe despite competition by other thermophilous tree species. Our combined palaeoecological and model evidence suggest that A. alba may ensure important ecosystem services including stand and slope stability, infrastructure protection, and carbon sequestration under significantly warmer-than-present conditions in central Europe.
Resumo:
Changes in temperature and carbon dioxide during glacial cycles recorded in Antarctic ice cores are tightly coupled. However, this relationship does not hold for interglacials. While climate cooled towards the end of both the last (Eemian) and present (Holocene) interglacials, CO₂ remained stable during the Eemian while rising in the Holocene. We identify and review twelve biogeochemical mechanisms of terrestrial (vegetation dynamics and CO₂ fertilization, land use, wild fire, accumulation of peat, changes in permafrost carbon, subaerial volcanic outgassing) and marine origin (changes in sea surface temperature, carbonate compensation to deglaciation and terrestrial biosphere regrowth, shallow-water carbonate sedimentation, changes in the soft tissue pump, and methane hydrates), which potentially may have contributed to the CO₂ dynamics during interglacials but which remain not well quantified. We use three Earth System Models (ESMs) of intermediate complexity to compare effects of selected mechanisms on the interglacial CO₂ and δ¹³ CO₂ changes, focusing on those with substantial potential impacts: namely carbonate sedimentation in shallow waters, peat growth, and (in the case of the Holocene) human land use. A set of specified carbon cycle forcings could qualitatively explain atmospheric CO₂ dynamics from 8ka BP to the pre-industrial. However, when applied to Eemian boundary conditions from 126 to 115 ka BP, the same set of forcings led to disagreement with the observed direction of CO₂ changes after 122 ka BP. This failure to simulate late-Eemian CO₂ dynamics could be a result of the imposed forcings such as prescribed CaCO₃ accumulation and/or an incorrect response of simulated terrestrial carbon to the surface cooling at the end of the interglacial. These experiments also reveal that key natural processes of interglacial CO₂ dynamics eshallow water CaCO₃ accumulation, peat and permafrost carbon dynamics are not well represented in the current ESMs. Global-scale modeling of these long-term carbon cycle components started only in the last decade, and uncertainty in parameterization of these mechanisms is a main limitation in the successful modeling of interglacial CO₂ dynamics.
Resumo:
Eight synchronous pre-Roman cold phases were found at 9600–9200, 8600–8150, 7550–6900, 6600– 6200, 5350–4900, 4600–4400, 3500–3200 and 2600–2350 radiocarbon years BP by reconstructing past climate at two sites on the Swiss Plateau and at timberline in the Alps. The cooling events during the early-and mid-Holocene represent temperature values similar to today, and apparently the onset of cooling events represents a deviation from today's mean annual temperature of about 1°C and is triggered at a 1000-year periodicity. At Wallisellen-Langachermoos (440 m), a former oligotrophic lake near Zürich, the correlation between sum mertime lake levels and the seed production of the amphi-Atlantic aquatic plantNajas flexilis was used to reconstruct lake levels over a 3000-year period during the first part of the Holocene. At Lake Seedorf on the western Swiss Plateau (609 m) the sedimentological, palynological and macrofossil record revealed fluctuations of lake levels for the complete Holocene. From Lago Basso in the southern Alps (2250 m, Val San Giacomo near Splügen Pass, Northern Italy) the terrestrial plant macrofossils – especiallyPinus cembra andLarix – allowed the reconstruction of timberline fluctuations controlled by climate. A similar climatic pattern was found at Gouillé Rion pond in the central Swiss Alps (2343 m, Val d'Hérémence) with plant macrofossils and pollen concentrations and percentages. We postulate that these climatic events are detectable throughout central Europe by independent methods in combination with precise AMS-radiocarbon datings on terrestrial plant remains. Our data fit other proxy records of regional climatic change, such as cool intervals from Greenland ice cores, glacier movements in the Swiss and Austrian Alps, and dendro-densitometry on subfossil wood, as well as the palaeoclimatic data from the Jura Mountains of France obtained by sedimentological analyses. Thus our data indicate that the Northern Hemisphere climate was less stable during the Holocene than previously believed.
Resumo:
Pollen and plant-macrofossil data are presented for two lakes near the timberline in the Italian (Lago Basso, 2250 m) and Swiss Central Alps (Gouille Rion, 2343 m). The reforestation at both sites started at 9700-9500 BP with Pinus cembra, Larbc decidua, and Betula. The timberline reached its highest elevation between 8700 and 5000 BP and retreated after 5000 BP, due to a mid-Holocene climatic change and increasing human impact since about 3500 BP (Bronze Age). The expansion of Picea abies at Lago Basso between ca. 7500 and 6200 BP was probably favored by cold phases accompanied by increased oceanicity, whereas in the area of Gouille Rion, where spruce expanded rather late (between 4500 and 3500 BP), human influence equally might have been important. The mass expansion of Alnus viridis between ca. 5000 and 3500 BP probably can be related to both climatic change and human activity at timberline. During the early and middle Holocene a series of timberline fluctuations is recorded as declines in pollen and macrofossil concentrations of the major tree species, and as increases in nonarboreal pollen in the pollen percentage diagram of Gouille Rion. Most of ·the periods of low timberline can be correlated by radiocarbon dating with climatic changes in the Alps as indicated by glacier ad vances in combination with palynological records, solifluction, and dendrocli matical data. Lago Basso and Gouille Rion are the only sites in the Alps showing complete palaeobotanical records of cold phases between 10,000 and 2000 BP with very good time control. The altitudinal range of the Holocene treeline fluc tuations caused by climate most likely was not more than 100 to 150 m. A possible correlation of a cold period at ca. 7500-6500 BP (Misox oscil lation) in the Alps is made with paleoecological data from North America and Scandinavia and a climatic signal in the GRIP ice core from central Greenland 8200 yr ago (ca. 7400 yr uncal. BP).
Resumo:
Lake Ohrid (Macedonia/Albania) is an ancient lake with unique biodiversity and a site of global significance for investigating the influence of climate, geological, and tectonic events on the generation of endemic populations. Here, we present oxygen (δ18O) and carbon (δ13C) isotope data from carbonate over the upper 243 m of a composite core profile recovered as part of the Scientific Collaboration on Past Speciation Conditions in Lake Ohrid (SCOPSCO) project. The investigated sediment succession covers the past ca. 637 ka. Previous studies on short cores from the lake (up to 15 m, < 140 ka) have indicated the total inorganic carbon (TIC) content of sediments to be highly sensitive to climate change over the last glacial–interglacial cycle. Sediments corresponding to warmer periods contain abundant endogenic calcite; however, an overall low TIC content in glacial sediments is punctuated by discrete bands of early diagenetic authigenic siderite. Isotope measurements on endogenic calcite (δ18Oc and δ13Cc) reveal variations both between and within interglacials that suggest the lake has been subject to palaeoenvironmental change on orbital and millennial timescales. We also measured isotope ratios from authigenic siderite (δ18Os and δ13Cs) and, with the oxygen isotope composition of calcite and siderite, reconstruct δ18O of lake water (δ18Olw) over the last 637 ka. Interglacials have higher δ18Olw values when compared to glacial periods most likely due to changes in evaporation, summer temperature, the proportion of winter precipitation (snowfall), and inflow from adjacent Lake Prespa. The isotope stratigraphy suggests Lake Ohrid experienced a period of general stability from marine isotope stage (MIS) 15 to MIS 13, highlighting MIS 14 as a particularly warm glacial. Climate conditions became progressively wetter during MIS 11 and MIS 9. Interglacial periods after MIS 9 are characterised by increasingly evaporated and drier conditions through MIS 7, MIS 5, and the Holocene. Our results provide new evidence for long-term climate change in the northern Mediterranean region, which will form the basis to better understand the influence of major environmental events on biological evolution within Lake Ohrid.