969 resultados para GROWTH-FACTORS
Resumo:
Tendinous lesions are very common in athlete horses. The process of tendon healing is slow and the quality of the new tissue is often inferior to the original, leading in many cases to recurrence of the lesion. One of the main reasons for the limited healing capacity of tendons is its poor vascularization. At present, cell therapy is used in equine practice for the treatment of several disorders including tendinitis, desmitis and joint disease. However, there is little information regarding the mechanisms of action of these cells during tissue repair. It is known that Mesenchymal Stem Cells (MSCs) release several growth factors at the site of implantation, some of which promote angiogenesis. Comparison of blood flow using power Doppler ultrasonography was performed after the induction superficial digital flexor tendon tendinitis and implantation of adipose tissue-derived MSCs in order to analyze the effect of cell therapy on tendon neovascularization. For quantification of blood vessel histopathological examinations were conducted. Increased blood flow and number of vessels was observed in treated tendons up to 30 days after cell implantation, suggesting promotion of angiogenesis by the cell therapy.
Resumo:
Bone reconstructions are traditionally conducted with autogenous grafts harvested from intra- or extra-oral donor sites to reestablish the lost bone volume for further implant-prosthetic rehabilitation. The calvarial bone has been studied as an excellent donor site in large atrophic situations, presenting low resorption rates, as well as complications and minimal morbidity. The hospitalization time is short, with low pain levels, short functional limitations, and invisible scars. The skull microarchitecture is predominantly cortical in the presence of growth factors that demonstrate their osteogenic, osteoinductive, and osteoconductive abilities resulting in low resorption rate and high predictability when compared to the iliac crest. Dural lacerations, extra and subdural bleeding, cerebrospinal fluid leakage, and brain damage have been minimized due to the development of surgical technique. The delimitation of diploe, preserving the internal skull cortex before osteotomy at the donor made it possible to reduce accidents and complications. The aim of this paper is to show a technical and to discuss aspects of the use of calvarial bone in the reconstruction of severely atrophic maxilla for oral rehabilitation with osseointegrated implants.
Resumo:
Accidents caused by thermal, chemical, electrical or radioactive agents cause skin lesions causing burns of varying degrees. The therapeutic approach aims to restore damaged tissues and involves a wide range of products on the market. This study aims to evaluate the use of biological dressing, biotech product developed at the Blood Center of Botucatu / UNESP obtained from fresh frozen plasma or platelet concentrate with in vitro addition of thrombin and calcium gluconate. This addition in the platelet concentrate, intended to release the active growth factors of the platelets granules on the healing process. The study of the effectiveness of Platelet Gel home made in Wistar rats was established, in agreement with scald burns, comparing efficacy and cost of Platelet Gel with usual hospital -based treatment collagenase + chloramphenicol plus cost analysis through pharmacoeconomics. We used 25 Wistar rats were divided into 3 treatment groups: Group A, Collagenase + Chloramphenicol; Group B, Platelet Gel and C, control. The products were applied every other day for 30 days in animals. In group A, there was the presence of erythema and crust in all animals. The exudates was indentified 2/10 animals. For the Group B, we observed the presence of erythema and crust at all and no presence of exudates. In group C all the animals showed erythema with no presence of exudates and scab occurred in 1/10. Statistical analysis showed significant difference ( p < 0.0 ) for crust formation between Groups B and C. In the histological analysis, group A showed a slight amount of blood vessels and collagen fibers, moderate amounts of macrophages and fibroblasts was observed while B and C groups showed moderate amounts of blood vessels, macrophages and fibroblasts and discreet presence of collagen fibers. The re-epithelialization occurred in most animals of all groups without significant statistical differences. For the aspects of pharmacoeconomics, the platelet gel presented a better cost - effectiveness in relation to treatment based on collagenase / chloramphenicol. In light of the ethical aspects of the raw material is the result of spontaneous blood donation, the proposal should have biological dressings productions the responsibility of public blood transfusion centers for free distribution. This may point to the production chain of Brazilian blood banks like special blood components for use no intravenous.
Resumo:
Pós-graduação em Bases Gerais da Cirurgia - FMB
Resumo:
This study aims to clinically and macroscopically evaluate the adjuvant therapy with platelet-rich plasma in the form of eyedrops or clot, for corneal ulcers in dogs treated at the Veterinary Ophthalmology Service. We analyzed 20 eyes diagnosed with ulcerative keratitis, divided into two experimental groups. The eyedrop group (GC) was composed of eyes treated topically with eyedrops of autologous plateletrich plasma (PRP), and the clot group (GT) was composed of eyes treated with a platelet-rich clot and covered with a third eyelid for retention of the clot. The groups were evaluated by clinical and macroscopic analysis and by the analysis of epithelial defect reduction, at different times, at three, five, ten, 15 and 30 days, except for the third day in GT. The coverage of the third eyelid was removed on the fifth day. In both groups the inflammation signs reduced, there was an improvement in ocular sensibility and proper repair of epithelial defect. All GT eyes and 70% GC eyes showed complete healing on the fifth day, the remainder of GC completed healing on the tenth day. PRP in the form of eyedrops and clot is an excellent adjuvant therapy to be instituted in the clinical treatment for corneal ulcer in dogs, because it decreases the inflammatory signs and the ocular pain and it potentially assists in healing epithelial defects.
Resumo:
Many peptides are responsible for the coordination of muscle contraction, secretion and ciliary beating of the oviduct epithelium to allow the transport of gametes and embryos, including vascular endothelial growth factors (VEGF), prostaglandins (PGs), endotelin-1 (ET-1) andangiotensinII(Ang II). The effect of reproductive biotechnologiesusedto improve embryo yield on oviduct gene expression is poorly understood. Thus, the aim of the present study was to evaluate the effect of ovarian superstimulation on the mRNA expression of the genes encoding the major peptides involved in oviduct contraction in bovine. Therefore, Nelore cows were submitted to P-36 (n = 5) or P-36/eCG (n = 5) ovarian superstimulatory protocols and a control group of cows was not submitted to any superstimulatory protocol (n = 5). The relative expression of VEGF (VEGF, Flk1, Flt1), Ang II (AGTR2, ACE1), ET1 (ET1, ECE1) and PG pathway members (PGES, EP2, EP4, COX1, COX2) was analyzed using real time RT-PCR in each of oviduct segment (infundibulum, ampulla and isthmus). All target genes were expressed in the three segments of the bovine oviduct; however, specific genes were regulated by ovarian superstimulation: EP2 and EP4 receptors mRNA was affected by P- 36/eCG protocol, in the ampulla and infundibulum, respectively; and AGTR2 mRNA was up-regulated by both the P-36/eCG and P-36 protocols in the isthmus. The upregulation of EP2, EP4 and AGTR2 expression in the superstimulated cows suggests a suitable effect of FSH and eCG on bovine oviduct physiology, coordinating the contraction in Nelore cows
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Pesquisa e Desenvolvimento (Biotecnologia Médica) - FMB
Resumo:
Lipid rafts are highly ordered membrane domains rich in cholesterol and sphingolipids that provide a scaffold for signal transduction proteins; altered raft structure has also been implicated in cancer progression. We have shown that 25 mu M 10-(octyloxy) decyl-2-(trimethylammonium) ethyl phosphate (ODPC), an alkylphospholipid, targets high cholesterol domains in model membranes and induces apoptosis in leukemia cells but spares normal hematopoietic and epithelial cells under the same conditions. We performed a quantitative (SILAC) proteomic screening of ODPC targets in a lipid-raft-enriched fraction of leukemic cells to identify early events prior to the initiation of apoptosis. Six proteins, three with demonstrated palmitoylation sites, were reduced in abundance. One, the linker for activation of T-cell family member 2 (LAT2), is an adaptor protein associated with lipid rafts in its palmitoylated form and is specifically expressed in B lymphocytes and myeloid cells. Interestingly, LAT2 is not expressed in K562, a cell line more resistant to ODPC-induced apoptosis. There was an early loss of LAT2 in the lipid-raft-enriched fraction of NB4 cells within 3 h following treatment with 25 mu M ODPC. Subsequent degradation of LAT2 by proteasomes was observed. Twenty-five mu M ODPC inhibited AKT activation via myeloid growth factors, and LAT2 knockdown in NB4 cells by shRNA reproduced this effect. LAT2 knockdown in NB4 cells also decreased cell proliferation and increased cell sensitivity to ODPC (7.5X), perifosine (3X), and arsenic trioxide (8.5X). Taken together, these data indicate that LAT2 is an early mediator of the anti-leukemic activity of alkylphospholipids and arsenic trioxide. Thus, LAT2 may be used as a target for the design of drugs for cancer therapy. Molecular & Cellular Proteomics 11: 10.1074/mcp.M112.019661, 1898-1912, 2012.
Resumo:
Background. The mechanisms underlying pleural inflammation and pleurodesis are poorly understood. We hypothesized that the cytokines transforming growth factor beta (TGF beta 1) and vascular endothelial growth factor (VEGF) play a major role in pleurodesis after intrapleural silver nitrate (SN) injection. Method. Forty rabbits received intrapleurally 0.5% SN alone or 0.5% SN + anti-TGF beta 1, anti-IL-8, or anti-VEGF. After 28 days, the animals were euthanized and macroscopic pleural adhesions, microscopic pleural fibrosis, and collagen deposition were analyzed for characterization of the degree of pleurodesis (scores 0-4). Results. Scores of pleural adhesions, pleural fibrosis, total collagen, and thin collagen fibers deposition after 28 days were significantly lower for 0.5% SN + anti-TGF beta 1 and 0.5% SN + anti-VEGF. Significant correlations were found between macroscopic adhesion and microscopic pleural fibrosis with total collagen and thin collagen fibers. Conclusions. We conclude that both TGF beta 1 and VEGF, but not IL-8, mediate the pleural inflammatory response and pleurodesis induced by SN.
Resumo:
There has been tremendous progress in understanding neural stem cell (NSC) biology, with genetic and cell biological methods identifying sequential gene expression and molecular interactions guiding NSC specification into distinct neuronal and glial populations during development. Data has emerged on the possible exploitation of NSC-based strategies to repair adult diseased brain. However, despite increased information on lineage specific transcription factors, cell-cycle regulators and epigenetic factors involved in the fate and plasticity of NSCs, understanding of extracellular cues driving the behavior of embryonic and adult NSCs is still very limited. Knowledge of factors regulating brain development is crucial in understanding the pathogenetic mechanisms of brain dysfunction. Since injury-activated repair mechanisms in adult brain often recapitulate ontogenetic events, the identification of these players will also reveal novel regenerative strategies. Here, we highlight the purinergic system as a key emerging player in the endogenous control of NSCs. Purinergic signalling molecules (ATP, UTP and adenosine) act with growth factors in regulating the synchronized proliferation, migration, differentiation and death of NSCs during brain and spinal cord development. At early stages of development, transient and time-specific release of ATP is critical for initiating eye formation; once anatomical CNS structures are defined, purinergic molecules participate in calcium-dependent neuron-glia communication controlling NSC behaviour. When development is complete, some purinergic mechanisms are silenced, but can be re-activated in adult brain after injury, suggesting a role in regeneration and self-repair. Targeting the purinergic system to develop new strategies for neurodevelopmental disorders and neurodegenerative diseases will be also discussed.
Resumo:
We evaluated the effects of cigarette smoke (CS) on lung inflammation and remodeling in a model of ovalbumin (OVA)-sensitized and OVA-challenged mice. Male BALB/c mice were divided into 4 groups: non-sensitized and air-exposed (control); non-sensitized and exposed to cigarette smoke (CS), sensitized and air-exposed (OVA) (50 mu g + OVA 1% 3 times/week for 3 weeks) and sensitized and cigarette smoke exposed mice (OVA + CS). IgE levels were not affected by CS exposure. The increases in total bronchoalveolar fluid cells in the OVA group were attenuated by co-exposure to CS, as were the changes in IL-4, IL-5, and eotaxin levels as well as tissue elastance (p < 0.05). In contrast, only the OVA + CS group showed a significant increase in the protein expression of IFN-gamma, VEGF, GM-CSF and collagen fiber content (p < 0.05). In our study, exposure to cigarette smoke in OVA-challenged mice resulted in an attenuation of pulmonary inflammation but led to an increase in pulmonary remodeling and resulted in the dissociation of airway inflammation from lung remodeling. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Aerobic conditioning (AC) performed either during or after sensitization reduces allergic inflammation in mice; however, the effects of AC performed before and during allergic sensitization on airway inflammation are unknown. Mice were divided into Control, AC, OVA, and AC + OVA groups. Mice were trained in a treadmill followed by either ovalbumin (OVA) sensitization or saline administration. Peribronchial inflammation, OVA-specific IgE and IgG1 titers, the expression of Th1 and Th2 cytokines, and airway remodeling were evaluated, as well as the expression of Eotaxin, RANTES, ICAM-1, VCAM-1, TGF-beta and VEGF. Aerobic conditioning performed before and during allergic sensitization displayed an inhibitory effect on the OVA-induced migration of eosinophils and lymphocytes to the airways, a reduction of IgE and IgG1 titers and an inhibition of the expression of Th2 cytokines. The AC + OVA group also demonstrated reduced expression of ICAM-1, VCAM-1, RANTES, TGF-beta and VEGF, as well as decreased airway remodeling (p < 0.05). The effects of AC before and during the sensitization process inhibit allergic airway inflammation and reduce the production of Th2 cytokines and allergen-specific IgE and IgG1.
Resumo:
The human granulocyte colony stimulating factor (hG-CSF) plays an important role in hematopoietic cell proliferation/differentiation and has been widely used as a therapeutic agent for treating neutropenias. Nartograstim is a commercial G-CSF that presents amino acid changes in specific positions when compared to the wildtype form, which potentially increase its activity and stability. The aim of this work was to develop an expression system in Escherichia coli that leads to the production of large amounts of a recombinant hG-CSF (rhG-CSF) biosimilar to Nartograstim. The nucleotide sequence of hg-csf was codon-optimized for expression in E. coli. As a result, high yields of the recombinant protein were obtained with adequate purity, structural integrity and biological activity. This protein has also been successfully used for the production of specific polyclonal antibodies in mice, which could be used in the control of the expression and purification in an industrial production process of this recombinant protein. These results will allow the planning of large-scale production of this mutant version of hG-CSF (Nartograstim), as a potential new biosimilar in the market.