988 resultados para GLYCINE-RICH PROTEINS
Resumo:
Brain-derived neurotrophic factor (BDNF) promotes synaptic plasticity via an enhancement in expression of specific synaptic proteins. Recent results suggest that the neuronal monocarboxylate transporter MCT2 is a postsynaptic protein critically involved in synaptic plasticity and long-term memory. To investigate in vivo whether BDNF can modulate the expression of MCT2 as well as other proteins involved in synaptic plasticity, acute injection of BDNF was performed in mouse dorsal hippocampal CA1 area. Using immunohistochemistry, it was found that MCT2 expression was enhanced in part of the CA1 area and in the dentate gyrus 6 h after a single intrahippocampal injection of BDNF. Similarly, expression of the immediate early genes Arc and Zif268 was enhanced in the same hippocampal areas, in accordance with their role in synaptic plasticity. Immunoblot analysis confirmed the significant enhancement in MCT2 protein expression. In contrast, no changes were observed for the glial monocarboxylate transporters MCT1 and MCT4. When other synaptic proteins were investigated, it was found that postsynaptic density 95 (PSD95) and glutamate receptor 2 (GluR2) protein levels were significantly enhanced while no effect could be detected for synaptophysin, synaptosomal-associated protein 25 (SNAP25), αCaMKII and GluR1. These results demonstrate that MCT2 expression can be upregulated together with other key postsynaptic proteins in vivo under conditions related to synaptic plasticity, further suggesting the importance of energetics for memory formation.
Resumo:
Evidence is growing for a role of Waddlia chondrophila as an agent of adverse pregnancy outcomes in both humans and ruminants. This emerging pathogen, member of the order Chlamydiales, is also implicated in bronchiolitis and lower respiratory tract infections. Until now, the serological diagnosis of W. chondrophila infection has mainly relied on manually intensive tests including micro-immunofluorescence and Western blotting. Thus, there is an urgent need to establish reliable high throughput serological assays. Using a combined genomic and proteomic approach, we detected 57 immunogenic proteins of W. chondrophila, of which 17 were analysed by mass spectrometry. Two novel hypothetical proteins, Wim3 and Wim4, were expressed as recombinant proteins in Escherichia coli, purified and used as antigens in an ELISA test. Both proteins were recognized by sera of rabbits immunized with W. chondrophila as well as by human W. chondrophila positive sera but not by rabbit pre-immune sera nor human W. chondrophila negative sera. These results demonstrated that the approach chosen is suitable to identify immunogenic proteins that can be used to develop a serological test. This latter will be a valuable tool to further clarify the pathogenic potential of W. chondrophila.
Resumo:
Myristoylated alanine-rich C kinase substrate (MARCKS) and MARCKS-related protein (MRP; MacMARCKS) are protein kinase C substrates in diverse cell types. Activation of murine macrophages by cytokines increases MRP expression, but infection with Leishmania promastigotes during activation results in MRP depletion. We therefore examined the effect of Leishmania major LV39 on recombinant MRP. Both live promastigotes and a soluble fraction of LV39 lysates degraded MRP to yield lower molecular weight fragments. Degradation was independent of MRP myristoylation and was inhibited by protein kinase C-dependent phosphorylation of MRP. MRP was similarly degraded by purified leishmanolysin (gp63), a Leishmania surface metalloprotease. Degradation was evident at low enzyme/substrate ratios, over a broad pH range, and was inhibited by 1,10-phenanthroline and by a hydroxamate dipeptide inhibitor of leishmanolysin. Using mass spectrometric analysis, cleavage was shown to occur within the effector domain of MRP between Ser(92) and Phe(93), in accordance with the substrate specificity of leishmanolysin. Moreover, an MRP construct in which the effector domain had been deleted was resistant to cleavage. Thus, Leishmania infection may result in leishmanolysin-dependent hydrolysis of MRP, a major protein kinase C substrate in macrophages.
Resumo:
Functional characterization of transformed or natively present bacterial virulence proteins can be achieved employing various model systems. A prerequisite is to verify the correct expression of the transformed protein or the presence of the native protein in the microbe. Traditionally, antibodies are raised against the protein or a peptide thereof, followed by Western blot analysis or by fluorescence-activated cell sorting. Alternatively, the protein-coding gene can be fused with a downstream reporter gene, the expression of which reports the simultaneous expression of the upstream recombinant protein. Although being powerful, these methods are time consuming, especially when multiple proteins must be assessed. Here we describe a novel way to validate the expression of Gram-positive surface proteins covalently attached to the peptidoglycan. Eighteen out of the 21 known LPXTG-motif carrying cell wall-associated proteins of Staphylococcus aureus were cloned in Lactoccocus lactis either alone, in combinations or as truncated forms, and their correct expression was assessed by liquid chromatography coupled to mass spectrometry (LC-MS). The method is rapid, sensitive and precise. It can identify multiple proteins in transformed constructs without the time and cost needed for raising and testing multiple sets of antibodies.
Resumo:
Diverse conditions for stimulating human mononuclear cells to release thymocyte costimulatory factors were tested for their contribution to the generation of supernatants high titers of these monokines. Activity titers increased with LPS concentration, reaching a plateau between 1 and 10 microng/ml. Indomethacin did not modify the monokine, but the assay for thymocyte costimulatory activity was substantially affected by inhibitory substances produced by the monocytes in the absence of indomethacin. The use of nylon wool columns to trap the cells was shown to be effective in raising cellular densities without decreasing activity titers. As result, the yield per cell could be maintained even in the absence of serum, an important step toward the goal of purifiying bioactive from crude broths.
Resumo:
A panel of novel monoclonal antibodies was tested on the human entorhinal cortex for the recognition of age- and disease-related changes of neurofilament proteins (NF). Several antibodies identified phosphorylated NF-H subunit, which occurred preferentially in those aged between 60 and 80 years and were localized in degenerating neurons. Such neurons also contained neurofibrillary tangles, but neurofilament aggregates did not co-localize with tangles, nor did the quantity nor the number of NF-positive neurons correlate with the severity of Alzheimer's disease. This points to a susceptibility of NF in a subset of neurons for phosphorylation- and metabolically related morphological changes during neurodegeneration.
Resumo:
The proteins of adults worms (male and female) of two isolates (BH and RJ) of Shistosoma mansoni were extracted using Triton X-114 phase separation. The SDS-polyacrilamide gel electrophoresis profiles of the three phases (detergent, aqueous and insoluble proteins) obtained were compared after Coomassie blue and silver staining, surface radioiodination and Western blotting. No major differences were detected between the 2 isolates. Of the 25 or more proteins which partitioned into the detergent phase, only about 8 proteins could be surface radiodinated on live adult worms. A comparison was also made between the profiles of mael and females worms, isolated from bisexually infected mice. Two major female-specific and one male-specific band were detected by silver and/or Coomassie staining. The female bands, 32 KDa and 18 KDa, partitioned into the detergent and aqueous phase, respectively. The male-specific band of 42 KDa remained in the insoluble phase. Antigenic differences between male and females protins were detected by Western vlotting using a sera from infected Nectomys squamipes.
Resumo:
Viruses have evolved many distinct strategies to avoid the host's apoptotic response. Here we describe a new family of viral inhibitors (v-FLIPs) which interfere with apoptosis signalled through death receptors and which are present in several gamma-herpesviruses (including Kaposi's-sarcoma-associated human herpesvirus-8), as well as in the tumorigenic human molluscipoxvirus. v-FLIPs contain two death-effector domains which interact with the adaptor protein FADD, and this inhibits the recruitment and activation of the protease FLICE by the CD95 death receptor. Cells expressing v-FLIPs are protected against apoptosis induced by CD95 or by the related death receptors TRAMP and TRAIL-R. The herpesvirus saimiri FLIP is detected late during the lytic viral replication cycle, at a time when host cells are partially protected from CD95-ligand-mediated apoptosis. Protection of virus-infected cells against death-receptor-induced apoptosis may lead to higher virus production and contribute to the persistence and oncogenicity of several FLIP-encoding viruses.
Resumo:
A role for cytokine regulated proteins in epithelial cells has been suggested in the pathogenesis of inflammatory bowel diseases (IBD). The aim of this study was to identify such cytokine regulated targets using a proteomic functional approach. Protein patterns from (35)S-radiolabeled homogenates of cultured colon epithelial cells were compared before and after exposure to interferon-gamma, interleukin-1beta and interleukin-6. Proteins were separated by two-dimensional polyacrylamide gel electrophoresis. Both autoradiographies and silver stained gels were analyzed. Proteins showing differential expression were identified by tryptic in-gel digestion and mass spectrometry. Metabolism related proteins were also investigated by Western blot analysis. Tryptophanyl-tRNA synthetase, indoleamine-2,3-dioxygenase, heterogeneous nuclear ribonucleoprotein JKTBP, interferon-induced 35kDa protein, proteasome subunit LMP2 and arginosuccinate synthetase were identified as cytokine modulated proteins in vitro. Using purified epithelial cells from patients, overexpression of indoleamine-2,3-dioxygenase, an enzyme involved in tryptophan metabolism, was confirmed in Crohn's disease as well as in ulcerative colitis, as compared to normal mucosa. No such difference was found in diverticulitis. Potentially, this observation opens new avenues in the treatment of IBD.