848 resultados para GLUCOSE METABOLIC-RATE


Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To identify the electrocardiographic changes and their associations with metabolic and electrolytic changes in female alcoholics. METHODS: The study comprised 44 female alcoholics with no apparent physical disorder. They underwent the following examinations: conventional electrocardiography; serologic tests for syphilis, Chagas' disease, and hepatitis B and C viruses; urinary pregnancy testing; hematimetric analysis; biochemical measurements of albumin, fibrinogen, fasting and postprandial glycemias, lipids, hepatic enzymes, and markers for tissue necrosis and inflammation. RESULTS: Some type of electrocardiographic change was identified in 33 (75%) patients. In 17 (38.6%) patients, more than one of the following changes were present: prolonged QTc interval in 24 (54.5%), change in ventricular repolarization in 11(25%), left ventricular hypertrophy in 6 (13.6%), sinus bradycardia in 4 (9.1%), sinus tachycardia in 3 (6.8%), and conduction disorder in 3 (6.8%). The patients had elevated mean serum levels of creatine phosphokinase, aspartate aminotransferases, and gamma glutamyl transferase, as well as hypocalcemia and low levels of total cholesterol and LDL-cholesterol. The patients with altered electrocardiograms had a more elevated age, a lower alcohol consumption, hypopotassemia, and significantly elevated levels of triglycerides, postprandial glucose, sodium and gamma glutamyl transferase than those with normal electrocardiograms. The opposite occurred with fasting glycemia, magnesium, and alanine aminotransferase. CONCLUSION: The electrocardiographic changes found were prolonged QTc interval, change in ventricular repolarization, and left ventricular hypertrophy. Patients with normal and abnormal electrocardiograms had different metabolic and electrolytic changes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Résumé : Les progrès techniques de la spectrométrie de masse (MS) ont contribué au récent développement de la protéomique. Cette technique peut actuellement détecter, identifier et quantifier des milliers de protéines. Toutefois, elle n'est pas encore assez puissante pour fournir une analyse complète des modifications du protéome corrélées à des phénomènes biologiques. Notre objectif était le développement d'une nouvelle stratégie pour la détection spécifique et la quantification des variations du protéome, basée sur la mesure de la synthèse des protéines plutôt que sur celle de la quantité de protéines totale. Pour cela, nous volions associer le marquage pulsé des protéines par des isotopes stables avec une méthode d'acquisition MS basée sur le balayage des ions précurseurs (precursor ion scan, ou PIS), afin de détecter spécifiquement les protéines ayant intégré les isotopes et d'estimer leur abondance par rapport aux protéines non marquées. Une telle approche peut identifier les protéines avec les plus hauts taux de synthèse dans une période de temps donnée, y compris les protéines dont l'expression augmente spécifiquement suite à un événement précis. Nous avons tout d'abord testé différents acides aminés marqués en combinaison avec des méthodes PIS spécifiques. Ces essais ont permis la détection spécifique des protéines marquées. Cependant, en raison des limitations instrumentales du spectromètre de masse utilisé pour les méthodes PIS, la sensibilité de cette approche s'est révélée être inférieure à une analyse non ciblée réalisée sur un instrument plus récent (Chapitre 2.1). Toutefois, pour l'analyse différentielle de deux milieux de culture conditionnés par des cellules cancéreuses humaines, nous avons utilisé le marquage métabolique pour distinguer les protéines d'origine cellulaire des protéines non marquées du sérum présentes dans les milieux de culture (Chapitre 2.2). Parallèlement, nous avons développé une nouvelle méthode de quantification nommée IBIS, qui utilise des paires d'isotopes stables d'acides aminés capables de produire des ions spécifiques qui peuvent être utilisés pour la quantification relative. La méthode IBIS a été appliquée à l'analyse de deux lignées cellulaires cancéreuses complètement marquées, mais de manière différenciée, par des paires d'acides aminés (Chapitre 2.3). Ensuite, conformément à l'objectif initial de cette thèse, nous avons utilisé une variante pulsée de l'IBIS pour détecter des modifications du protéome dans des cellules HeLa infectée par le virus humain Herpes Simplex-1 (Chapitre 2.4). Ce virus réprime la synthèse des protéines des cellules hôtes afin d'exploiter leur mécanisme de traduction pour la production massive de virions. Comme prévu, de hauts taux de synthèse ont été mesurés pour les protéines virales détectées, attestant de leur haut niveau d'expression. Nous avons de plus identifié un certain nombre de protéines humaines dont le rapport de synthèse et de dégradation (S/D) a été modifié par l'infection virale, ce qui peut donner des indications sur les stratégies utilisées par les virus pour détourner la machinerie cellulaire. En conclusion, nous avons montré dans ce travail que le marquage métabolique peut être employé de façon non conventionnelle pour étudier des dimensions peu explorées en protéomique. Summary : In recent years major technical advancements greatly supported the development of mass spectrometry (MS)-based proteomics. Currently, this technique can efficiently detect, identify and quantify thousands of proteins. However, it is not yet sufficiently powerful to provide a comprehensive analysis of the proteome changes correlated with biological phenomena. The aim of our project was the development of ~a new strategy for the specific detection and quantification of proteomé variations based on measurements of protein synthesis rather than total protein amounts. The rationale for this approach was that changes in protein synthesis more closely reflect dynamic cellular responses than changes in total protein concentrations. Our starting idea was to couple "pulsed" stable-isotope labeling of proteins with a specific MS acquisition method based on precursor ion scan (PIS), to specifically detect proteins that incorporated the label and to simultaneously estimate their abundance, relative to the unlabeled protein isoform. Such approach could highlight proteins with the highest synthesis rate in a given time frame, including proteins specifically up-regulated by a given biological stimulus. As a first step, we tested different isotope-labeled amino acids in combination with dedicated PIS methods and showed that this leads to specific detection of labeled proteins. Sensitivity, however, turned out to be lower than an untargeted analysis run on a more recent instrument, due to MS hardware limitations (Chapter 2.1). We next used metabolic labeling to distinguish the proteins of cellular origin from a high background of unlabeled (serum) proteins, for the differential analysis of two serum-containing culture media conditioned by labeled human cancer cells (Chapter 2.2). As a parallel project we developed a new quantification method (named ISIS), which uses pairs of stable-isotope labeled amino acids able to produce specific reporter ions, which can be used for relative quantification. The ISIS method was applied to the analysis of two fully, yet differentially labeled cancer cell lines, as described in Chapter 2.3. Next, in line with the original purpose of this thesis, we used a "pulsed" variant of ISIS to detect proteome changes in HeLa cells after the infection with human Herpes Simplex Virus-1 (Chapter 2.4). This virus is known to repress the synthesis of host cell proteins to exploit the translation machinery for the massive production of virions. As expected, high synthesis rates were measured for the detected viral proteins, confirming their up-regulation. Moreover, we identified a number of human proteins whose synthesis/degradation ratio (S/D) was affected by the viral infection and which could provide clues on the strategies used by the virus to hijack the cellular machinery. Overall, in this work, we showed that metabolic labeling can be employed in alternative ways to investigate poorly explored dimensions in proteomics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A role for the gastro-intestinal tract in controlling bone remodeling is suspected since serum levels of bone remodeling markers are affected rapidly after a meal. Glucose-dependent insulinotropic polypeptide (GIP) represents a suitable candidate in mediating this effect. The aim of the present study was to investigate the effect of total inhibition of GIP signaling on trabecular bone volume, microarchitecture and quality. We used GIP receptor (GIPR) knockout mice and investigated trabecular bone volume and microarchitecture by microCT and histomorphometry. GIPR-deficient animals at 16 weeks of age presented with a significant (20%) increase in trabecular bone mass accompanied by an increase (17%) in trabecular number. In addition, the number of osteoclasts and bone formation rate was significantly reduced and augmented, respectively in these animals when compared with wild-type littermates. These modifications of trabecular bone microarchitecture are linked to a remodeling in the expression pattern of adipokines in the GIPR-deficient mice. On the other hand, despite significant enhancement in bone volume, intrinsic mechanical properties of the bone matrix was reduced as well as the distribution of bone mineral density and the ratio of mature/immature collagen cross-links. Taken together, these results indicate an increase in trabecular bone volume in GIPR KO animals associated with a reduction in bone quality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The metabolic and respiratory effects of intravenous 0.5 M sodium acetate (at a rate of 2.5 mmol/min during 120 min) were studied in nine normal human subjects. O2 consumption (VO2) and CO2 production (VCO2) were measured continuously by open-circuit indirect calorimetry. VO2 increased from 251 +/- 9 to 281 +/- 9 ml/min (P < 0.001), energy expenditure increased from 4.95 +/- 0.17 kJ/min baseline to 5.58 +/- 0.16 kJ/min (P < 0.001), and VCO2 decreased nonsignificantly (211 +/- 7 ml/min vs. 202 +/- 7 ml/min, NS). The extrapulmonary CO2 loss (i.e., bicarbonate generation and excretion) was estimated at 48 +/- 5 ml/min. This observation is consistent with 1 mol of bicarbonate generated from 1 mol of acetate metabolized. Alveolar ventilation decreased from 3.5 +/- 0.2 l/min basal to 3.1 +/- 0.2 l/min (P < 0.001). The minute ventilation (VE) to VO2 ratio decreased from 22.9 +/- 1.3 to 17.6 +/- 0.9 l/l (P < 0.005), arterial PO2 decreased from 93.2 +/- 1.9 to 78.7 +/- 1.6 mmHg (P < 0.0001), arterial PCO2 increased from 39.2 +/- 0.7 to 42.1 +/- 1.1 mmHg (P < 0.0001), pH from 7.40 +/- 0.005 to 7.50 +/- 0.007 (P < 0.005), and arterial bicarbonate concentration from 24.2 +/- 0.7 to 32.9 +/- 1.1 (P < 0.0001). These observations indicate that sodium acetate infusion results in substantial extrapulmonary CO2 loss, which leads to a relative decrease of total and alveolar ventilation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The plasma glucose excursion may influence the metabolic responses after oral glucose ingestion. Although previous studies addressed the effects of hyperglycemia in conditions of hyperinsulinemia, it has not been evaluated whether the route of glucose administration (oral vs. intravenous) plays a role. Our aim was to determine the effects of moderately controlled hyperglycemia on glucose metabolism before and after oral glucose ingestion. Eight normal men underwent two oral glucose clamps at 6 and 10 mmol/l plasma glucose. Glucose turnover and cycling rates were measured by infusion of [2H7]glucose. The oral glucose load was labeled by D-[6,6-2H2]glucose to monitor exogenous glucose appearance, and respiratory exchanges were measured by indirect calorimetry. Sixty percent of the oral glucose load appeared in the systemic circulation during both the 6 and 10 mmol/l plasma glucose tests, although less endogenous glucose appeared during the 10 mmol/l tests before glucose ingestion (P &lt; 0.05). This inhibitory effect of hyperglycemia was not detectable after oral glucose ingestion, although glucose utilization was increased (+28%, P &lt; 0.05) due to increased nonoxidative glucose disposal [10 vs. 6 mmol/l: +20%, not significant (NS) before oral glucose ingestion; +40%, P &lt; 0.05 after oral glucose ingestion]. Glucose cycling rates were increased by hyperglycemia (+13% before oral glucose ingestion, P &lt; 0.001; +31% after oral glucose ingestion, P &lt; 0.05) and oral glucose ingestion during both the 6 (+10%, P &lt; 0.05) and 10 mmol/l (+26%, P &lt; 0.005) tests. A moderate hyperglycemia inhibits endogenous glucose production and contributes to glucose tolerance by enhancing nonoxidative glucose disposal. Hyperglycemia and oral glucose ingestion both stimulate glucose cycling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We addressed the questions of how cerebral glucose transport and phosphorylation change under acute hypoglycemia and what the underlying mechanisms of adaptation are. METHODS: Quantitative (18)F-FDG PET combined with the acquisition of real-time arterial input function was performed on mice. Hypoglycemia was induced and maintained by insulin infusion. PET data were analyzed with the 2-tissue-compartment model for (18)F-FDG, and the results were evaluated with Michaelis-Menten saturation kinetics. RESULTS: Glucose clearance from plasma to brain (K1,glc) and the phosphorylation rate constant increased with decreasing plasma glucose (Gp), in particular at a Gp of less than 2.5 mmol/L. Estimated cerebral glucose extraction ratios taking into account an increased cerebral blood flow (CBF) at a Gp of less than 2 mmol/L were between 0.14 and 0.79. CBF-normalized K1,glc values were in agreement with saturation kinetics. Phosphorylation rate constants indicated intracellular glucose depletion at a Gp of less than 2-3 mmol/L. When brain regions were compared, glucose transport under hypoglycemia was lowest in the hypothalamus. CONCLUSION: Alterations in glucose transport and phosphorylation, as well as intracellular glucose depletion, under acute hypoglycemia can be modeled by saturation kinetics taking into account an increase in CBF. Distinct transport kinetics in the hypothalamus may be involved in its glucose-sensing function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recent developments in high magnetic field 13C magnetic resonance spectroscopy with improved localization and shimming techniques have led to important gains in sensitivity and spectral resolution of 13C in vivo spectra in the rodent brain, enabling the separation of several 13C isotopomers of glutamate and glutamine. In this context, the assumptions used in spectral quantification might have a significant impact on the determination of the 13C concentrations and the related metabolic fluxes. In this study, the time domain spectral quantification algorithm AMARES (advanced method for accurate, robust and efficient spectral fitting) was applied to 13 C magnetic resonance spectroscopy spectra acquired in the rat brain at 9.4 T, following infusion of [1,6-(13)C2 ] glucose. Using both Monte Carlo simulations and in vivo data, the goal of this work was: (1) to validate the quantification of in vivo 13C isotopomers using AMARES; (2) to assess the impact of the prior knowledge on the quantification of in vivo 13C isotopomers using AMARES; (3) to compare AMARES and LCModel (linear combination of model spectra) for the quantification of in vivo 13C spectra. AMARES led to accurate and reliable 13C spectral quantification similar to those obtained using LCModel, when the frequency shifts, J-coupling constants and phase patterns of the different 13C isotopomers were included as prior knowledge in the analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A metabolic hypothesis is presented for insulin resistance in obesity, in the presence or absence of Type 2 (non-insulin-dependent) diabetes mellitus. It is based on physiological mechanisms including a series of negative feed-back mechanisms, with the inhibition of the function of the glycogen cycle in skeletal muscle as a consequence of decreased glucose utilization resulting from increased lipid oxidation in the obese. It considers the inhibition of glycogen synthase activity together with inhibition of glucose storage and impaired glucose tolerance. The prolonged duration of increased lipid oxidation, considered as the initial cause, may lead to Type 2 diabetes. This hypothesis is compatible with others based on the inhibition of insulin receptor kinase and of glucose transporter activities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To determine the mechanisms that prevent an increase in gluconeogenesis from increasing hepatic glucose output, six healthy women were infused with [1-13C]fructose (22 mumol.kg-1.min-1), somatostatin, insulin, and glucagon. In control experiment, non-13C-enriched fructose was infused at the same rate without somatostatin, and [U-13C]glucose was infused to measure specifically plasma glucose oxidation. Endogenous glucose production (EGP, [6,6-2H]glucose), net carbohydrate oxidation (CHOox, indirect calorimetry), and fructose oxidation (13CO2) were measured. EGP rate did not increase after fructose infusion with (13.1 +/- 1.2 vs. 12.9 +/- 0.3 mumol.kg-1.min-1) and without (10.3 +/- 0.5 vs. 9.7 +/- 0.5 mumol.kg-1.min-1) somatostatin, despite the fact that gluconeogenesis increased. Nonoxidative fructose disposal, corresponding mainly to glycogen synthesis, was threefold net glycogen deposition, the latter calculated as fructose infusion minus CHOox (14.8 +/- 1.1 and 4.3 +/- 2.0 mumol.kg-1.min-1). It is concluded that 1) the mechanism by which EGP remains constant when gluconeogenesis from fructose increases is independent of changes in insulin and 2) simultaneous breakdown and synthesis of glycogen occurred during fructose infusion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To assess the role of the alpha1b-adrenergic receptor (AR) in glucose homeostasis, we investigated glucose metabolism in knockout mice deficient of this receptor subtype (alpha1b-AR-/-). Mutant mice had normal blood glucose and insulin levels, but elevated leptin concentrations in the fed state. During the transition to fasting, glucose and insulin blood concentrations remained markedly elevated for at least 6 h and returned to control levels after 24 h whereas leptin levels remained high at all times. Hyperinsulinemia in the post-absorptive phase was normalized by atropine or methylatropine indicating an elevated parasympathetic activity on the pancreatic beta cells, which was associated with increased levels of hypothalamic NPY mRNA. Euglycemic clamps at both low and high insulin infusion rates revealed whole body insulin resistance with reduced muscle glycogen synthesis and impaired suppression of endogenous glucose production at the low insulin infusion rate. The liver glycogen stores were 2-fold higher in the fed state in the alpha1b-AR-/- compared with control mice, but were mobilized at the same rate during the fed to fast transition or following glucagon injections. Finally, high fat feeding for one month increased glucose intolerance and body weight in the alpha1b-AR-/-, but not in control mice. Altogether, our results indicate that in the absence of the alpha1b-AR the expression of hypotalamic NPY and the parasympathetic nervous activity are both increased resulting in hyperinsulinemia and insulin resistance as well as favoring obesity and glucose intolerance development during high fat feeding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glucose is absorbed through the intestine by a transepithelial transport system initiated at the apical membrane by the cotransporter SGLT-1; intracellular glucose is then assumed to diffuse across the basolateral membrane through GLUT2. Here, we evaluated the impact of GLUT2 gene inactivation on this transepithelial transport process. We report that the kinetics of transepithelial glucose transport, as assessed in oral glucose tolerance tests, was identical in the presence or absence of GLUT2; that the transport was transcellular because it could be inhibited by the SGLT-1 inhibitor phlorizin, and that it could not be explained by overexpression of another known glucose transporter. By using an isolated intestine perfusion system, we demonstrated that the rate of transepithelial transport was similar in control and GLUT2(-/-) intestine and that it was increased to the same extent by cAMP in both situations. However, in the absence, but not in the presence, of GLUT2, the transport was inhibited dose-dependently by the glucose-6-phosphate translocase inhibitor S4048. Furthermore, whereas transport of [(14)C]glucose proceeded with the same kinetics in control and GLUT2(-/-) intestine, [(14)C]3-O-methylglucose was transported in intestine of control but not of mutant mice. Together our data demonstrate the existence of a transepithelial glucose transport system in GLUT2(-/-) intestine that requires glucose phosphorylation and transfer of glucose-6-phosphate into the endoplasmic reticulum. Glucose may then be released out of the cells by a membrane traffic-based pathway similar to the one we previously described in GLUT2-null hepatocytes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of cell type-specific Na+,K+-ATPase isozymes in function-related glucose metabolism was studied using differentiated rat brain cell aggregate cultures. In mixed neuron-glia cultures, glucose utilization, determined by measuring the rate of radiolabeled 2-deoxyglucose accumulation, was markedly stimulated by the voltage-dependent sodium channel agonist veratridine (0.75 micromol/L), as well as by glutamate (100 micromol/L) and the ionotropic glutamate receptor agonist N-methyl-D-aspartate (NMDA) (10 micromol/L). Significant stimulation also was elicited by elevated extracellular potassium (12 mmol/L KCl), which was even more pronounced at 30 mmol/L KCl. In neuron-enriched cultures, a similar stimulation of glucose utilization was obtained with veratridine, specific ionotropic glutamate receptor agonists, and 30 mmol/L but not 12 mmol/L KCl. The effects of veratridine, glutamate, and NMDA were blocked by specific antagonists (tetrodotoxin, CNQX, or MK801, respectively). Low concentrations of ouabain (10(-6) mol/L) prevented stimulation by the depolarizing agents but reduced only partially the response to 12 mmol/L KCl. Together with previous data showing cell type-specific expression of Na+,K+-ATPase subunit isoforms in these cultures, the current results support the view that distinct isoforms of Na+,K+-ATPase regulate glucose utilization in neurons in response to membrane depolarization, and in glial cells in response to elevated extracellular potassium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: The hyperglycemic hyperinsulinemic clamp technique using intraduodenally infused glucose is an attractive tool for studying postprandial glucose metabolism under strictly controlled conditions. Because it requires the use of somatostatin (SST), we examined, in this study, the effect of SST on intestinal glucose absorption. CONTEXT: Twenty-six normal volunteers were given a constant 3-h intraduodenal infusion of glucose (6 mg.kg(-1).min(-1)) labeled with [2-(3)H]glucose for glucose absorption measurement. During glucose infusion, 19 subjects received iv SST at doses of 10-100 ng.kg(-1).min(-1) plus insulin and glucagon, and seven subjects were studied under control conditions. In the controls, glucose was absorbed at a rate that, after a 20-min lag period, equaled the infusion rate. RESULTS: With all the doses of SST tested, absorption was considerably delayed but equaled the rate of infusion after 3 h. At that time, only 5 +/- 2% of the total amount of infused glucose was unabsorbed in the control subjects vs. 36 +/- 2% (P < 0.001) in the SST-infused subjects. In the latter, the intraluminal residue was almost totally absorbed within 40 min of the cessation of SST infusion. At the lowest dose of SST tested (10 ng.kg(-1).min(-1)), suppression of insulin secretion was incomplete. CONCLUSION: These properties of SST hamper the use of intraduodenal hyperglycemic hyperinsulinemic clamps as a tool for exploring postprandial glucose metabolism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to analyze the associations of plasma aldosterone and plasma renin activity with the metabolic syndrome and each of its components. We analyzed data from a family based study in the Seychelles made up of 356 participants (160 men and 196 women) from 69 families of African descent. In multivariable models, plasma aldosterone was associated positively (P < 0.05) with blood pressure in older individuals (interaction with age, P < 0.05) and with waist circumference in men (interaction with sex, P < 0.05) and negatively with high-density lipoprotein cholesterol, in particular in individuals with elevated urinary potassium excretion (interaction with urinary potassium, P < 0.05); plasma renin activity was significantly associated with triglycerides and fasting blood glucose. Plasma aldosterone, but not plasma renin activity, was associated with the metabolic syndrome per se, independently of the association with its separate components. The observation that plasma renin activity was associated with some components of the metabolic syndrome, whereas plasma aldosterone was associated with other components of the metabolic syndrome, suggests different underlying mechanisms. These findings reinforce previous observations suggesting that aldosterone is associated with several cardiovascular risk factors and also suggest that aldosterone might contribute to the increased cardiovascular disease risk in individuals of African descent with the metabolic syndrome.