974 resultados para GLUCEMIA BASAL
Resumo:
New organic/inorganic (O/I) hybrid assemblies based on Layered Double Hydroxide (LDH) with polyamide amine dendrimer (PAMAM, generation -0.5 and generation +0.5) were prepared by two different routes using either the direct coprecipitation at constant pH or the anion exchange procedure in double surfactant S(+)S(-) phases. The obtained materials were characterized by means of powder X-ray diffraction, thermal gravimetric analysis associated with mass spectrometry, and Fourier-transform infrared spectroscopy. X-ray powder diffraction pattern of the O/I LDH assembly exhibit characteristic profiles of LDH-based materials with basal spacing depending on the nature of the dendrimer. Indeed, for both synthetic procedures, interleaved PAMAM -0.5 gives rise to an interlayer space in agreement with a perpendicular molecular arrangement against the layer of the host structure. For PAMAM+0.5, considering its spherical dimension, a much smaller basal spacing was observed. This observation was interpreted as shrinkage of the molecule to accommodate the interlayer LDH gap, which was rendered possible by the bond angle twisting within PAMAM-0.5. FTIR spectra confirm the presence of both moieties inside both Zn(2)Al/PAMAM G-0.5 and Zn(2)Al/PAMAM G+0.5 assemblies. Finally, thermal analysis associated with mass spectrometry confirm this composition, and in situ temperature XRD data reveal that the highly constrained arrangement for the generation +0.5 is not accompanied by a gain in thermal structural stability; in fact, the assembly prepared from PAMAM -0.5 is more stable. Both O/I PAMAM LDH assemblies constitute well-defined materials which are candidate for catalytic applications.
Resumo:
Layered Double Hydroxides are a class of materials that can be described as positively charged layers of divalent and trivalent cations in the centre of edge-sharing octahedra. Cholesterol derivatives such as cholic acid are substances that play an important role in the digestion of fat components by the organism. This work presents a study on the intercalation of cholate anions in calcined MgAl-CO(3)-HDL. Isotherm experiments were performed at three different temperatures to evaluate the capacity of anion removal by sorption in the calcined LDH. The plateau was reached in all conditions. Increasing temperature results in decreasing cholate sorption. Characteristic peaks of LDH regenerated with OH(-) anions were observed at lower cholate concentrations. A peak in 2 theta equals to 7.5 degrees and peaks between 15 degrees and 20 degrees are observed. Those peaks are the same as the ones observed in the pure sodium cholate PXRD. At higher cholate concentrations the sorbed solids present PXRD related to an additional layered phase, which is related to intercalation of cholate anions with basal spacing equal to 34.3 angstrom. Thus, the cholate anions are also intercalated with a bilayer molecular arrangement at equilibrium concentrations at the isotherms plateau. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
An analysis of the relationships of the major arthropod groups Was undertaken using mitochondrial genome data to examine the hypotheses that Hexapoda is polyphyletic and that Collembola is more closely related to branchiopod crustaceans than insects. We sought to examine the sensitivity of this relationship to outgroup choice, data treatment. gene choice and optimality criteria used in the phylogenetic analysis of mitochondrial genome data. Additionally we sequenced the mitochondrial genome of ail archaeognathan, Nesomachilis australica. to improve taxon selection in the apterygote insects, a group poorly represented in previous mitochondrial phylogenies. The sister group of the Collembola was rarely resolved in our analyses with a significant level of support. The use of different outgroups (myriapods, nematodes, or annelids + mollusks) resulted in many different placements of Collembola. The way in which the dataset was coded for analysis (DNA, DNA with the exclusion of third codon position and as amino acids) also had marked affects on tree topology. We found that nodal Support was spread evenly throughout the 13 mitochondrial genes and the exclusion of genes resulted in significantly less resolution in the inferred trees. Optimality criteria had a much lesser effect on topology than the preceding factors; parsimony and Bayesian trees for a given data set and treatment were quite similar. We therefore conclude that the relationships of the extant arthropod groups as inferred by mitochondrial genomes are highly vulnerable to outgroup choice, data treatment and gene choice, and no consistent alternative hypothesis of Collembola's relationships is supported. Pending the resolution of these identified problems with the application of mitogenomic data to basal arthropod relationships, it is difficult to justify the rejection of hexapod monophyly, which is well supported on morphological grounds. (c) The Willi Hennig Society 2004.
Resumo:
Motor impairments of Parkinson`s disease (PD) appear only after the loss of more than 70% of the DAergic neurons of the substantia nigra pars compacta (SNc). An earlier phase of this disease can be modeled in rats that received a unilateral infusion of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrindine (MPTP) into the SNc. Though these animals do not present gross motor impairments, they rotate towards the lesioned side when challenged with DAergic drugs, like amphetamine and apomorphine. The present study aimed to test whether these effects occur because the drugs disrupt compensatory mechanisms that keep extracellular levels of dopamine in the striatum (DA(E)) unchanged. This hypothesis was tested by an in vivo microdialysis study in awake rats with two probes implanted in the right and left striatum. Undrugged rats did not present turning behaviour and their basal DA(E) did not differ between the lesioned and sham-lesioned sides. However, after apomorphine treatment, DA(E) decreased in both sides, but to a larger extent in the lesioned side at the time the animals started ipsiversive turning behaviour. After amphetamine challenge, DA(E) increased in both sides, becoming significantly higher in the non-lesioned side at the time the animals started ipsiversive turning behaviour. These results are in agreement with the hypothesis that absence of gross motor impairments in this rat model of early phase PD depends on maintenance of extracellular DA by mechanisms that may be disrupted by events demanding its alteration to higher or lower levels. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
To better comprehend the structural and biochemical underpinnings of ion uptake across the gills of true freshwater crabs, we performed an ultrastructural, ultracytochemical and morphometric investigation, and kinetically characterized the Na(+), K(+)-ATPase, in posterior gill lamellae of Dilocarcinus pagei. Ultrastructurally, the lamellar epithelia are markedly asymmetrical: the thick, mushroom-shaped, proximal ionocytes contain elongate mitochondria (41% cell volume) associated with numerous (approximate to 14 mu m(2) membrane per mu m(3) cytoplasm), deep invaginations that house the Na(+), K(+)-ATPase, revealed ultracytochemically. Their apical surface is amplified (7.5 mu m(2) mu m(-2)) by stubby evaginations whose bases adjoin mitochondria below the subcuticular space. The apical membrane of the thin, distal ionocytes shows few evaginations (1.6 mu m(2) mu m(-2)), each surrounding a mitochondrion, abundant in the cytoplasm below the subcuticular space; basolateral invaginations and mitochondria are few. Fine basal cytoplasmic bridges project across the hemolymph space, penetrating into the thick ionocytes, suggesting ion movement between the epithelia. Microsomal Na(+), K(+)-ATPase specific activity resembles marine crabs but is approximate to 5-fold less than in species from fluctuating salinities, and freshwater shrimps, suggesting ion loss compensation by strategies other than Na(+) uptake. Enzyme apparent K(+) affinity attains 14-fold that of marine crabs, emphasizing the relevance of elevated K(+) affinity to the conquest of fresh water. Western blotting and biphasic ouabain inhibition disclose two alpha-subunit isoforms comprising distinct functional isoenzymes. While enzyme activity is not synergistically stimulated by NH(4)(+) and K(+), each increases affinity for the other, possibly assuring appropriate intracellular K(+) concentrations. These findings reveal specific structural and biochemical adaptations that may have allowed the establishment of the Brachyura in fresh water. J. Exp. Zool. 313A:508-523, 2010. (C) 2010 Wiley-Liss, Inc.
Resumo:
Background: Microarray transcript profiling has the potential to illuminate the molecular processes that are involved in the responses of cattle to disease challenges. This knowledge may allow the development of strategies that exploit these genes to enhance resistance to disease in an individual or animal population. Results: The Bovine Innate Immune Microarray developed in this study consists of 1480 characterised genes identified by literature searches, 31 positive and negative control elements and 5376 cDNAs derived from subtracted and normalised libraries. The cDNA libraries were produced from 'challenged' bovine epithelial and leukocyte cells. The microarray was found to have a limit of detection of 1 pg/mu g of total RNA and a mean slide-to-slide correlation co-efficient of 0.88. The profiles of differentially expressed genes from Concanavalin A ( ConA) stimulated bovine peripheral blood lymphocytes were determined. Three distinct profiles highlighted 19 genes that were rapidly up-regulated within 30 minutes and returned to basal levels by 24 h; 76 genes that were upregulated between 2 - 8 hours and sustained high levels of expression until 24 h and 10 genes that were down-regulated. Quantitative real-time RT-PCR on selected genes was used to confirm the results from the microarray analysis. The results indicate that there is a dynamic process involving gene activation and regulatory mechanisms re-establishing homeostasis in the ConA activated lymphocytes. The Bovine Innate Immune Microarray was also used to determine the cross-species hybridisation capabilities of an ovine PBL sample. Conclusion: The Bovine Innate Immune Microarray has been developed which contains a set of well-characterised genes and anonymous cDNAs from a number of different bovine cell types. The microarray can be used to determine the gene expression profiles underlying innate immune responses in cattle and sheep.
Resumo:
A polymorphism of the dopamine transporter gene (DAT1, 10-repeat) is associated with attention-deficit hyperactivity disorder (ADHD) and has been linked to an enhanced response to methylphenidate (MPH). One aspect of the attention deficit in ADHD includes a subtle inattention to left space, resembling that seen after right cerebral hemisphere damage. Since left-sided inattention in ADHD may resolve when treated with MPH, we asked whether left-sided inattention in ADHD was related to DAT1 genotype and the therapeutic efficacy of MPH. A total of 43 ADHD children and their parents were genotyped for the DAT1 30 variable number of tandem repeats polymorphism. The children performed the Landmark Test, a well-validated measure yielding a spatial attentional asymmetry index ( leftward to rightward attentional bias). Parents rated their child's response to MPH retrospectively using a three-point scale ( no, mediocre or very good response). Additionally, parents used a symptom checklist to rate behavior while on and off medication. A within-family control design determined whether asymmetry indices predicted biased transmission of 10-repeat parental DAT1 alleles and/or response to MPH. It was found that left-sided inattention predicted transmission of the 10-repeat allele from parents to probands and was associated with the severity of ADHD symptomatology. Children rated as achieving a very good response to MPH displayed left-sided inattention, while those rated as achieving a poorer response did not. Our results suggest a subgroup of children with ADHD for whom the 10-repeat DAT1 allele is associated with left-sided inattention. MPH may be most efficacious in this group because it ameliorates a DAT1-mediated hypodopaminergic state.
Resumo:
Inhibition of NFkB by the compound Bay 11–7082 (Bay) induces tolerogenic properties in dendritic cells (DC). While activation of NFkB can be induced by reactive oxygen species (ROS) and thiol/disulfide redox states, the consequences of NFkB blockade on ROS/redox state is not known. To generate immature DC, monocytes were cultured in GM-CSF and IL-4 (with or without Bay) for 48 h. Genes potentially involved in redox regulation were determined using microarray technology and validated using FACS, real-time PCR or western blotting. ROS were measured using two fluorescent dyes DHR-123 and DHE (to detect H2O2 or O2 respectively). We found increased expression of genes associated with reductants such as thioredoxin reductase (TrxR1) and glutathione (GSH), although those associated with the breakdown of H2O2 such as glutathione peroxidase, peroxiredoxins and catalase were decreased. Interestingly, Bay-treated DC produced less ROS in comparison to control DC under basal conditions and following stimulation with various pro-oxidants. In conclusion, Bay-treated DC display not only tolerogenic properties but also an intracellular reducing environment and an impaired ability to produce ROS. We are currently investigating whether exogenous ROS can interfere with the tolerogenic properties of Bay-treated DC.
Resumo:
Chang S, Gomes CM, Hypolite JA, Marx J, Alanzi J, Zderic SA, Malkowicz B, Wein AJ, Chacko S. Detrusor overactivity is associated with downregulation of large-conductance calcium-and voltage-activated potassium channel protein. Am J Physiol Renal Physiol 298: F1416-F1423, 2010. First published April 14, 2010; doi: 10.1152/ajprenal.00595.2009.-Large-conductance voltage-and calcium-activated potassium (BK) channels have been shown to play a role in detrusor overactivity (DO). The goal of this study was to determine whether bladder outlet obstructioninduced DO is associated with downregulation of BK channels and whether BK channels affect myosin light chain 20 (MLC(20)) phosphorylation in detrusor smooth muscle (DSM). Partial bladder outlet obstruction (PBOO) was surgically induced in male New Zealand White rabbits. The rabbit PBOO model shows decreased voided volumes and increased voiding frequency. DSM from PBOO rabbits also show enhanced spontaneous contractions compared with control. Both BK channel alpha- and beta-subunits were significantly decreased in DSM from PBOO rabbits. Immunostaining shows BK beta mainly expressed in DSM, and its expression is much less in PBOO DSM compared with control DSM. Furthermore, a translational study was performed to see whether the finding discovered in the animal model can be translated to human patients. The urodynamic study demonstrates several overactive DSM contractions during the urine-filling stage in benign prostatic hyperplasia (BPH) patients with DO, while DSM is very quiet in BPH patients without DO. DSM biopsies revealed significantly less BK channel expression at both mRNA and protein levels. The degree of downregulation of the BK beta-subunit was greater than that of the BK alpha-subunit, and the downregulation of BK was only associated with DO, not BPH. Finally, the small interference (si) RNA-mediated downregulation of the BK beta-subunit was employed to study the effect of BK depletion on MLC(20) phosphorylation. siRNA-mediated BK channel reduction was associated with an increased MLC(20) phosphorylation level in cultured DSM cells. In summary, PBOO-induced DO is associated with downregulation of BK channel expression in the rabbit model, and this finding can be translated to human BPH patients with DO. Furthermore, downregulation of the BK channel may contribute to DO by increasing the basal level of MLC(20) phosphorylation.
Resumo:
The biphasic life cycle, characterised by metamorphosis from a pelagic larva to a benthic adult, is found throughout the Metazoa. So is sexual reproduction via eggs and sperm. Amidst a tangled web of hypotheses on the origin of metazoan biphasy, current weight of opinion lies with a simple, larva-like holopelagic ancestor that independently settled multiple times to incorporate a benthic phase into the life cycle. This school of thought derives from Haeckel's interpretation of the gastrula as the recapitulation of a gastrean ancestor that evolved via selection on a simple, planktonic hollow ball-of-cells to develop the capacity to feed. We suggest that a paradigm shift is required to accomodate accumulating evidence of the genomic and developmental complexity of the metazoan last common ancestor, which was likely to have already possessed a biphasic lifecycle. Here we incorporate recent evidence from basal metazoans, in particular poriferans, to argue that a more parsimonious theory of the origin of biphasy is as a direct consequence of sexual reproduction in an ancestral benthic adult form. The metazoan embryo can itself be considered the precursor to a biphasic life cycle, wherein the embryo represents one phase and the adult another. Embryos in the water column are subject to natural selection for longeveity and dispersal, which sets them on the evolutionary trajectory towards the crown metazoan planktonic larvae. This alternate view considers the conserved use of regulatory genes in disparate metazoans as a reflection of both the complexity of the LCA and the antiquity of the biphasic life cycle. It does not require that extant embryogenesis, including gastrulation, recapitulates evolution.
Resumo:
Vagal Denervation and Neurally Mediated Syncope. A 15-year-old female patient presented with frequent episodes of vasovagal syncope refractory to non-pharmacological and pharmacological measures. Two tilt-table tests performed before and after conventional therapy were positive and reproduced the patient`s clinical symptoms. Selective vagal denervation, guided by HFS, was performed. Six radiofrequency pulses were applied on the left and right sides of the interatrial septum, abolishing vagal responses at these locations. Basal sinus node and Wenckebach cycle lengths changed significantly following ablation. A tilt test performed after denervation was negative and revealed autonomic tone modification. The patient reported significant improvement in quality of life and remained asymptomatic for 9 months after denervation. After this period, three episodes of NMS occurred during a 4-month interval and a tilt test performed 11 months after the procedure demonstrated vagal activity recovery. (J Cardiovasc Electrophysiol, Vol. 20, pp. 558-563, May 2009).
Resumo:
Objective: To investigate the influence of maternal glycemia on fetal heart rate (FHR) parameters analyzed by computerized cardiotocography in fetuses of diabetic mothers in the third trimester. Study design: Thirty-nine pregnant women with pregestational diabetes mellitus were studied prospectively. The inclusion criteria were a diagnosis of pregestational diabetes, singleton pregnancy between 36 and 40 weeks, and absence of fetal abnormalities. Computerized cardiotocography (System 8002) was performed over a period of 60 min and capillary glycemia was measured immediately before and 30 and 60 min after the beginning of the exam. The evaluations were done 2 h after lunch. Results: Nineteen patients (48.7%) presented mean glycemia >= 120 mg/dL The mean basal FHR was 136.7 +/- 10.0 bpm in the group with glycemia <120 mg/dL and 144.8 +/- 9.4 bpm in the group with glycemia >= 120 mg/dL (p = 0.013, Student`s t test). There was a significant positive correlation (Pearson`s test, p = 0.0001, r = 0.57) between basal FHR and mean glycemia. A significant negative correlation was observed between short-term variation and mean glycemia (Pearson`s test, p = 0.003, r = -0.47). No significant differences were observed between the other indices evaluated by computerized cardiotocography and glycemia. Conclusions: Maternal hyperglycemia at the time of cardiotocography is associated with elevated FHR. It seems to be important to understand how FHR parameters are influenced by maternal glycemic status at the time of fetal assessment in pregnancies complicated by diabetes. (C) 2009 Published by Elsevier Ireland Ltd.
Resumo:
Epidural motor cortex stimulation (MCS) has been used for treating patients with neuropathic pain resistant to other therapeutic approaches. Experimental evidence suggests that the motor cortex is also involved in the modulation of normal nociceptive response, but the underlying mechanisms of pain control have not been clarified yet. The aim of this study was to investigate the effects of epidural electrical MCS on the nociceptive threshold of naive rats. Electrodes were placed on epidural motor cortex, over the hind paw area, according to the functional mapping accomplished in this study. Nociceptive threshold and general activity were evaluated under 15-min electrical stimulating sessions. When rats were evaluated by the paw pressure test, MCS induced selective antinociception in the paw contralateral to the stimulated cortex, but no changes were noticed in the ipsilateral paw. When the nociceptive test was repeated 15 min after cessation of electrical stimulation, the nociceptive threshold returned to basal levels. On the other hand, no changes in the nociceptive threshold were observed in rats evaluated by the tail-flick test. Additionally, no behavioral or motor impairment were noticed in the course of stimulation session at the open-field test. Stimulation of posterior parietal or somatosensory cortices did not elicit any changes in the general activity or nociceptive response. Opioid receptors blockade by naloxone abolished the increase in nociceptive threshold induced by MCS. Data shown herein demonstrate that epidural electrical MCS elicits a substantial and selective antinociceptive effect, which is mediated by opioids. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Introduction: Findings suggest that obsessive-compulsi e disorder (OCD) and related disorders, referred to as obsessive-compulsive spectrum disorders (OCSDs), are more common in patients with rheumatic fever (RF). Objectives: To determine whether RF or Sydenham`s chorea increases the probability of anxiety disorders in the relatives of individuals with RF with and without SC. Methods: This was a case-Control family study in which 98 probands and 389 first-degree relatives (FDRs) were assessed using structured psychiatric interviews. A Poisson regression model was used to determine whether the presence of any disorder in one family member influences the rate of disorders in the remaining family members. Results: Generalized anxiety disorder (GAD) occurred more frequently in the FDRs of RF probands than in those of control probands (P=.018). The presence of RF,GAD, or separation anxiety disorder in one family member significantly increased the chance of OCSDs in another member of the family.