931 resultados para GLASS-TRANSITION TEMPERATURE
Resumo:
Glasses of various compositions in the system (100 - x)Li-2 B-4 O-7 - x (SrO-Bi2O3-Nb2O5) (10 less than or equal to x less than or equal to 60) (in molar ratio) were prepared via a conventional melt-quenching technique. The glassy nature of the as-quenched samples was established by Differential Thermal Analyses (DTA). X-ray powder diffraction (XRD) and Transmission Electron Microscopic (TEM) studies confirmed the amorphous nature of the as quenched and crystallinity in the heat-treated samples. The formation of nanocrystalline layered perovskite SrBi2Nb2O9 (SBN) phase, in the samples heat-treated at temperatures higher than 550degreesC, through an intermediate fluorite phase in the LBO glass matrix was confirmed by both the XRD and High Resolution Transmission Electron Microscopy (HRTEM). The samples that were heat-treated at two different temperatures, 550 and 625degreesC, (containing 0.35 and 0.47 mum sized SBN crystallites) exhibited broad dielectric anomalies in the vicinity of ferroelectric to paraelectric transition temperature of the parent SBN ceramics. A downward shift in the phase transition temperature was observed with decreasing crystallite size of SBN. The observation of pyroelectric and ferroelectric properties for the present samples confirmed their polar nature.
Resumo:
High resolution synchrotron X-ray diffraction, dielectric and Raman scattering study of a scheelite compound Li0.5Ce0.5MoO4 (LCM) revealed that it transforms to a self similar structure above 400 degrees C. The thermally induced isostructural phase transition (IPT), a phenomenon which has rarely been reported in the literature, is preceded by partial softening of the zone centre phonons followed by their hardening above the IPT transition temperature. The high temperature isostructural phase, which exhibits expanded lattice parameters and cell volume, nucleates and grows in the low temperature matrix over a very wide temperature range. Both the phases show nearly identical thermal expansion suggesting similarities in symmetry, unaltered coordination environments around the atoms across the transition.
Resumo:
Crystals of Boc-gamma y(4)(R)Val-Val-OH undergo a reversible first-order single crystal to single crystal phase transition at T-c approximate to 205 K from the orthorhombic space group P22(1)2(1) (Z' = 1) to the monoclinic space group P2(1) (Z' = 2) with a hysteresis of similar to 2.1 K. The low-temperature monoclinic form is best described as a nonmerohedral twin with similar to 50% contributions from its two components. The thermal behavior of the dipeptide crystals was characterized by differential scanning calorimetry experiments. Visual changes in birefringence of the sample during heating and cooling cycles on a hot-stage microscope with polarized light supported the phase transition. Variable-temperature unit cell check measurements from 300 to 100 K showed discontinuity in the volume and cell parameters near the transition temperature, supporting the first-order behavior. A detailed comparison of the room-temperature orthorhombic form with the low-temperature (100 K) monoclinic form revealed that the strong hydrogen-bonding motif is retained in both crystal systems, whereas the non-covalent interactions involving side chains of the dipeptide differ significantly, leading to a small change in molecular conformation in the monoclinic form as well as a small reorientation of the molecules along the ac plane. A rigid-body thermal motion analysis (translation, libration, screw; correlation of translation and libration) was performed to study the crystal entropy. The reversible nature of the phase transition is probably the result of an interplay between enthalpy and entropy: the low-temperature monoclinic form is enthalpically favored, whereas the room-temperature orthorhombic form is entropically favored.
Resumo:
The transformation of flowing liquids into rigid glasses is thought to involve increasingly cooperative relaxation dynamics as the temperature approaches that of the glass transition. However, the precise nature of this motion is unclear, and a complete understanding of vitrification thus remains elusive. Of the numerous theoretical perspectives(1-4) devised to explain the process, random first-order theory (RFOT; refs 2,5) is a well-developed thermodynamic approach, which predicts a change in the shape of relaxing regions as the temperature is lowered. However, the existence of an underlying `ideal' glass transition predicted by RFOT remains debatable, largely because the key microscopic predictions concerning the growth of amorphous order and the nature of dynamic correlations lack experimental verification. Here, using holographic optical tweezers, we freeze a wall of particles in a two-dimensional colloidal glass-forming liquid and provide direct evidence for growing amorphous order in the form of a static point-to-set length. We uncover the non-monotonic dependence of dynamic correlations on area fraction and show that this non-monotonicity follows directly from the change in morphology and internal structure of cooperatively rearranging regions(6,7). Our findings support RFOT and thereby constitute a crucial step in distinguishing between competing theories of glass formation.
Resumo:
Temporal relaxation of density fluctuations in supercooled liquids near the glass transition occurs in multiple steps. Using molecular dynamics simulations for three model glass-forming liquids, we show that the short-time beta relaxation is cooperative in nature. Using finite-size scaling analysis, we extract a growing length scale associated with beta relaxation from the observed dependence of the beta relaxation time on the system size. We find, in qualitative agreement with the prediction of the inhomogeneous mode coupling theory, that the temperature dependence of this length scale is the same as that of the length scale that describes the spatial heterogeneity of local dynamics in the long-time alpha-relaxation regime.
Resumo:
The thermal stability of Nd60Fe20Co10Al10 bulk metallic glass (BMG) has been studied by differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), isochronal dilatation and compression tests. The results show that the glass transition of the BMG takes place quite gradually between about 460 and 650 K at a heating rate of 0.17 K/s. Several transformation processes are observed during continuous heating with the first crystallization process beginning at about 460 K, while massive crystallization takes place near the solidus temperature of the alloy. The positive heat of mixing between the two major constituents, Nd and Fe, and, consequently, a highly inhomogeneous composition of the attained amorphous phase are responsible for the anomalous thermal stability in this system. (C) 2002 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
In the present work, the nematic glassy state of the non-symmetric LC dimer -(4-cyanobiphenyl-4-yloxy)--(1-pyrenimine-benzylidene-4-oxy) undecane is studied by means of calorimetric and dielectric measurements. The most striking result of the work is the presence of two different glass transition temperatures: one due to the freezing of the flip-flop motions of the bulkier unit of the dimer and the other, at a lower temperature, related to the freezing of the flip-flop and precessional motions of the cyanobiphenyl unit. This result shows the fact that glass transition is the consequence of the freezing of one or more coupled dynamic disorders and not of the disordered phase itself. In order to avoid crystallization when the bulk sample is cooled down, the LC dimer has been confined via the dispersion of -alumina nanoparticles, in several concentrations.
Resumo:
The fracture behavior of ABS materials with a particle diameter of 110 nm and of 330 nm was studied using instrumented Charpy impact tests. The effects of rubber content and temperature on fracture behavior, deformation mode, stable crack extension, plastic zone size, J-integral value, and crack opening displacement were investigated. In the case of a particle size of 110 nm, the material was found to break in a brittle manner, and the dominant crack mechanism was unstable crack propagation. Fracture toughness increases with increasing rubber content. In the case of a particle size of 330 nm, brittle-to-tough transition was observed. The J-integral value first increases with rubber content, then levels off after the rubber content is greater than 16 wt %. The J-integral value of a particle diameter of 330 nm was found to be much greater than that of 110 nm. The J-integral value of both series first increased with increasing temperature until reaching the maximum value, after which it decreased with further increasing temperature. The conclusion is that a particle diameter of 330 nm is more efficient than that of 110 nm in toughening, but for both series the effectiveness of rubber modification decreases with increasing temperatures higher than 40 degreesC because of intrinsic craze formation in the SAN matrix at temperatures near the glass transition of SAN. (C) 2000 John Wiley & Sons, Inc.
Resumo:
The viscoelastic behavior of phenolphthalein poly(ether ketone) (PEK-C) and its relationship to yielding was studied. The following phenomena were observed: (1) The relaxation behavior at strain near yield closely approximated that at low strain but near the T-g; (2) the temperature and strain rate dependence of yield stress could be modeled by the one-process Eyring theory and the value of the activation volume was the same as that of the glass transition; and (3) according to the Zhurkov-Bueche equation, the cu transition was related to the yield behavior. All these results indicated that the glass transition was the main factor that controlled the yield behavior. (C) 1996 John Wiley & Sons, Inc.
Resumo:
Greaves, George; Sen, S., (2007) 'Inorganic glasses, glass-forming liquids and amorphizing solids', Advances in Physics 56(1) pp.1-166 RAE2008
Resumo:
MTDSC is a software modification of the traditional DSC thermal analysis technique that allows more accurate determination of the glass transition as well as measurement of the endothermic relaxation that often accompanies the transition. The glass transition is an essential parameterboth of the original frozen solution and of the end product. Measurement of endothermic relaxation allows the determination of molecularrelaxation times in the freeze-dried product that may be useful in predicting the effect of formulation variables and storage conditions on physical stability.
Resumo:
A detailed investigation on the nature of the relaxation processes occurring in a typical room temperature ionic liquid (RTIL), namely, 1-butyl-3-methyl imidazolium hexafluorophosphate ([bmim][PF6]), is reported. The study was conducted using both elastic and inelastic neutron scattering over a wide temperature range from 10 to 400 K, accessing the dynamic features of both the liquid and glassy amorphous states. In this study, the inelastic fixed energy scan technique has been applied for the first time to this class of materials. Using this technique, the existence of two relaxation processes below the glass transition and a further diffusive process occurring above the glass-liquid transition are observed. The low temperature processes are associated with methyl group rotation and butyl chain relaxation in the glassy state and have been modeled in terms of two Debye-like, Arrhenius activated processes. The high temperature process has been modeled in terms of a Kohlraush-Williams-Watts relaxation, with a distinct Vogel-Fulcher-Tamman temperature dependence. These results provide novel information that will be useful in rationalizing the observed structural and dynamical behavior of RTILs in the amorphous state.
Resumo:
The electrical conductivities of 1-alkyl-3-methylimidazolium tetrafluoroborate ionic liquids and of 1-hexyl-3-methylimidazolium ionic liquids with different anions were determined in the temperature range between 123 and 393 K on the basis of dielectric measurements in the frequency range from 1 to 10(7) Hz. Most of the ionic liquids form a glass and the conductivity values obey the Vogel-Fulcher-Tammann equation. The glass transition temperatures are increasing with increasing length of the alkyl chain. The fragility is weakly dependent on the alkyl chain length but is highly sensitive to the structure of the anion. (c) 2008 American Institute of Physics.
Resumo:
Ionic liquids are organic salts with low melting points. Many of these compounds are liquid at room temperature in their pure state. Since they have negligible vapor pressure and would not contribute to air pollution, they are being intensively investigated for a variety of applications, including as solvents for reactions and separations, as non-volatile electrolytes, and as heat transfer fluids. We present melting temperatures, glass transition temperatures, decomposition temperatures, heat capacities, and viscosities for a large series of pyridinium-based ionic liquids. For comparison, we include data for several imidazolium and quaternary ammonium salts. Many of the compounds do not crystallize, but form glasses at temperatures between 188 K and 223 K. The thermal stability is largely determined by the coordinating ability of the anion, with ionic liquids made with the least coordinating anions, like bis(trifluoromethylsulfonyl)imide, having the best thermal stability. In particular, dimethylaminopyridinium bis(trifluoromethylsulfonyl)imide salts have some of the best thermal stabilities of any ionic liquid compounds investigated to date. Heat capacities increase approximately linearly with increasing molar mass, which corresponds with increasing numbers of translational, vibrational, and rotational modes. Viscosities generally increase with increasing number and length of alkyl substituents on the cation, with the pyridinium salts typically being slightly more viscous than the equivalent imidazolium compounds. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The electrical conductivity of a series of pyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquids, functionalized with a nitrile (cyano) group at the end of an alkyl chain attached to the cation, was studied in the temperature range between 173 K and 393 K. The glass formation of the ionic liquids is influenced by the length of the alkyl spacer separating the nitrile function from the pyrrolidinium ring. The electrical conductivity and the viscosity do not show a monotonic dependence on the alkyl spacer length, but rather an odd-even effect. An explanation for this behavior is given, including the potential energy landscape picture for the glass transition.