939 resultados para GGDEF domain
Resumo:
In this paper, a method for modeling diffusion caused by non-smooth boundary surfaces in simulations of room acoustics using finite difference time domain (FDTD) technique is investigated. The proposed approach adopts the well-known theory of phase grating diffusers to efficiently model sound scattering from rough surfaces. The variation of diffuser well-depths is attained by nesting allpass filters within the reflection filters from which the digital impedance filters used in the boundary implementation are obtained. The presented technique is appropriate for modeling diffusion at high frequencies caused by small surface roughness and generally diffusers that have narrow wells and infinitely thin separators. The diffusion coefficient was measured with numerical experiments for a range of fractional Brownian diffusers.
Resumo:
We propose a frequency domain adaptive algorithm for
wave separation in wind instruments. Forward and backward travelling waves are obtained from the signals acquired by two microphones placed along the tube, while the
separation ?lter is adapted from the information given by a
third microphone. Working in the frequency domain has a
series of advantages, among which are the ease of design of
the propagation ?lter and its differentiation with respect to
its parameters.
Although the adaptive algorithm was developed as a ?rst
step for the estimation of playing parameters in wind instruments it can also be used, without any modi?cations, for
other applications such as in-air direction of arrival (DOA)
estimation. Preliminary results on these applications will
also be presented.
Resumo:
Over 60 years ago, Charles Kittel predicted that quadrant domains should spontaneously form in small ferromagnetic platelets. He expected that the direction of magnetization within each quadrant should lie parallel to the platelet surface, minimizing demagnetizing fields, and that magnetic moments should be configured into an overall closed loop, or flux-closure arrangement. Although now a ubiquitous observation in ferromagnets, obvious flux-closure patterns have been somewhat elusive in ferroelectric materials. This is despite the analogous behaviour between these two ferroic subgroups and the recent prediction of dipole closure states by atomistic simulations research. Here we show Piezoresponse Force Microscopy images of mesoscopic dipole closure patterns in free-standing, single-crystal lamellae of BaTiO3. Formation of these patterns is a dynamical process resulting from system relaxation after the BaTiO3 has been poled with a uniform electric field. The flux-closure states are composed of shape conserving 90° stripe domains which minimize disclination stresses.
Resumo:
Using a combination of experimental and computational techniques, changes in the domain structures seen infreestanding single-crystal platelets of BaTiO3 have been described in terms of a second-order phase transition.The transition is driven by the change in the length-to-width ratio of the platelet sidewalls and results in a symmetrybreaking of a complex, quadrant domain pattern. The phenomenon can be described by a Landau formalism inwhich (1) the order parameter is not the polarization but rather is the degree to which the domain pattern becomesoff-centered, and (2) the shape anisotropy of the platelet substitutes for temperature in the conventional Landauexpansion as the controlling thermodynamic variable. Bistability, in terms of the direction in which the domainpattern moves off center, coupled with the spontaneous macroscopic polarization and toroidal moment that resultfrom this off-centering, prompt the possibility of a new form of memory storage.
Resumo:
Hypoxia results in adaptive changes in the transcription of a range of genes including erythropoietin. An important mediator is hypoxia-inducible factor-1 (HIF-1), a DNA binding complex shown to contain at least two basic helix-loop-helix PAS-domain (bHLH-PAS) proteins, HIF-1 alpha and aryl hydrocarbon nuclear receptor translocator (ARNT), In response to hypoxia, HIF-1 alpha is activated and accumulates rapidly in the cell. Endothelial PAS domain protein 1 (EPAS-1) is a recently identified bHLH-PAS protein with 48% identity to HIF-1 alpha, raising the question of its role in responses to hypoxia. We developed specific antibodies and studied expression and regulation of EPAS-1 mRNA and protein across a range of human cell lines. EPAS-1 was widely expressed, and strongly induced by hypoxia at the level of protein but not mRNA. Comparison of the effect of a range of activating and inhibitory stimuli showed striking similarities in the EPAS-1 and HIF-1 alpha responses. Although major differences were observed in the abundance of EPAS-1 and HIF-1 alpha in different cell types, differences in the inducible response were subtle with EPAS-1 protein being slightly more evident in normoxic and mildly hypoxic cells. Functional studies in a mutant cell line (Ka13) expressing neither HIF-1 alpha nor EPAS-1 confirmed that both proteins interact with hypoxically responsive targets, but suggest target specificity with greater EPAS-1 transactivation (relative to HIF-1 alpha transactivation) of the VEGF promoter than the LDH-A promoter. (C) 1998 by The American Society of Hematology.
Resumo:
As part of an ongoing programme to evaluate the extent to which external morphology alters domain wall mobility in ferroelectrics, the electrical switching characteristics of single-crystal BaTiO3 nanorods and thin film plates have been measured and compared. It was found that ferroelectric nanorods were more readily switched than thin plates; increasing the shape constraint therefore appears to enhance switchability. This observation is broadly consistent with previous work, in which local notches patterned along the length of nanorods enhanced switching (McMillen et al 2010 Appl. Phys. Lett. 96 042904), while antinotches had the opposite effect (McQuaid et al 2010 Nano Lett. 10 3566). In this prior work, local enhancement and denudation of the electric field was expected at the notch and antinotch sites, respectively, and this was thought to be the reason for the differences in switching behaviour observed. However, for the simple nanorods and plates investigated here, no differences in the electric field distributions are expected. To rationalise the functional measurements, domain development during switching was imaged directly by piezoresponse force microscopy. A two-stage process was identified, in which narrow needle-like reverse domains initially form across the entire interelectrode gap and then subsequently coarsen through domain wall propagation perpendicular to the applied electric field. To be consistent with the electrical switching data, we suggest that the initial formation of needle domains occurs more readily in the nanorods than in the plates.
Resumo:
The manner in which 90? ferroelectric-ferroelastic domains respond to changes in temperature has been mapped in BaTiO3 single crystals using atomic force microscopy. Domain periodicity remains unaltered until approximately 2 ? C below the Curie temperature (TC ), whereupon domains coarsened dramatically. This behavior was successfully rationalized by considering the temperature dependence of the parameters associated with standard models of ferroelastic domain formation. However, while successful in describing the expected radical increase in equilibrium period with temperature, the model did not predict the unusual mechanism by which domain coarsening occurred; this was not continuous at a local level but instead involved discrete domain annihilation events. Subsequent insights from a combination of free energy analysis for the system and further experimental data from an analogous situation, in which domain period increases with increasing crystal thickness, suggested that domain annihilation is inevitable whenever a component of the relevant gradient that affects domain period is orientated parallel to the domain walls. Consistent with this thesis, we note that, for the observations presented herein, the thermal gradient possessed a significant component parallel to the domain walls. We suggest that domain annihilation is a general feature of domain structures in gradient fields.