912 resultados para GENERALIZED-GRADIENT-APPROXIMATION
Resumo:
In the United Kingdom and in fact throughout Europe, the chosen standard for digital terrestrial television is the European Telecommunications Standards Institute (ETSI) ETN 300 744 also known as Digital Video Broadcasting - Terrestrial (DVB-T). The modulation method under this standard was chosen to be Orthogonal Frequency Division Multiplex (0FD4 because of the apparent inherent capability for withstanding the effects of multipath. Within the DVB-T standard, the addition of pilot tones was included that can be used for many applications such as channel impulse response estimation or local oscillator phase and frequency offset estimation. This paper demonstrates a technique for an estimation of the relative path attenuation of a single multipath signal that can be used as a simple firmware update for a commercial set-top box. This technique can be used to help eliminate the effects of multipath(1).
Resumo:
Nonlinear system identification is considered using a generalized kernel regression model. Unlike the standard kernel model, which employs a fixed common variance for all the kernel regressors, each kernel regressor in the generalized kernel model has an individually tuned diagonal covariance matrix that is determined by maximizing the correlation between the training data and the regressor using a repeated guided random search based on boosting optimization. An efficient construction algorithm based on orthogonal forward regression with leave-one-out (LOO) test statistic and local regularization (LR) is then used to select a parsimonious generalized kernel regression model from the resulting full regression matrix. The proposed modeling algorithm is fully automatic and the user is not required to specify any criterion to terminate the construction procedure. Experimental results involving two real data sets demonstrate the effectiveness of the proposed nonlinear system identification approach.
Resumo:
An efficient model identification algorithm for a large class of linear-in-the-parameters models is introduced that simultaneously optimises the model approximation ability, sparsity and robustness. The derived model parameters in each forward regression step are initially estimated via the orthogonal least squares (OLS), followed by being tuned with a new gradient-descent learning algorithm based on the basis pursuit that minimises the l(1) norm of the parameter estimate vector. The model subset selection cost function includes a D-optimality design criterion that maximises the determinant of the design matrix of the subset to ensure model robustness and to enable the model selection procedure to automatically terminate at a sparse model. The proposed approach is based on the forward OLS algorithm using the modified Gram-Schmidt procedure. Both the parameter tuning procedure, based on basis pursuit, and the model selection criterion, based on the D-optimality that is effective in ensuring model robustness, are integrated with the forward regression. As a consequence the inherent computational efficiency associated with the conventional forward OLS approach is maintained in the proposed algorithm. Examples demonstrate the effectiveness of the new approach.
Resumo:
A new identification algorithm is introduced for the Hammerstein model consisting of a nonlinear static function followed by a linear dynamical model. The nonlinear static function is characterised by using the Bezier-Bernstein approximation. The identification method is based on a hybrid scheme including the applications of the inverse of de Casteljau's algorithm, the least squares algorithm and the Gauss-Newton algorithm subject to constraints. The related work and the extension of the proposed algorithm to multi-input multi-output systems are discussed. Numerical examples including systems with some hard nonlinearities are used to illustrate the efficacy of the proposed approach through comparisons with other approaches.
Resumo:
In this paper, we introduce two kinds of graphs: the generalized matching networks (GMNs) and the recursive generalized matching networks (RGMNs). The former generalize the hypercube-like networks (HLNs), while the latter include the generalized cubes and the star graphs. We prove that a GMN on a family of k-connected building graphs is -connected. We then prove that a GMN on a family of Hamiltonian-connected building graphs having at least three vertices each is Hamiltonian-connected. Our conclusions generalize some previously known results.
Resumo:
Generalized cubes are a subclass of hypercube-like networks, which include some hypercube variants as special cases. Let theta(G)(k) denote the minimum number of nodes adjacent to a set of k vertices of a graph G. In this paper, we prove theta(G)(k) >= -1/2k(2) + (2n - 3/2)k - (n(2) - 2) for each n-dimensional generalized cube and each integer k satisfying n + 2 <= k <= 2n. Our result is an extension of a result presented by Fan and Lin [J. Fan, X. Lin, The t/k-diagnosability of the BC graphs, IEEE Trans. Comput. 54 (2) (2005) 176-184]. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Generalized honeycomb torus is a candidate for interconnection network architectures, which includes honeycomb torus, honeycomb rectangular torus, and honeycomb parallelogramic torus as special cases. Existence of Hamiltonian cycle is a basic requirement for interconnection networks since it helps map a "token ring" parallel algorithm onto the associated network in an efficient way. Cho and Hsu [Inform. Process. Lett. 86 (4) (2003) 185-190] speculated that every generalized honeycomb torus is Hamiltonian. In this paper, we have proved this conjecture. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The determination of the minimum size of a k-neighborhood (i.e., a neighborhood of a set of k nodes) in a given graph is essential in the analysis of diagnosability and fault tolerance of multicomputer systems. The generalized cubes include the hypercube and most hypercube variants as special cases. In this paper, we present a lower bound on the size of a k-neighborhood in n-dimensional generalized cubes, where 2n + 1 <= k <= 3n - 2. This lower bound is tight in that it is met by the n-dimensional hypercube. Our result is an extension of two previously known results. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
A novel radix-3/9 algorithm for type-III generalized discrete Hartley transform (GDHT) is proposed, which applies to length-3(P) sequences. This algorithm is especially efficient in the case that multiplication is much more time-consuming than addition. A comparison analysis shows that the proposed algorithm outperforms a known algorithm when one multiplication is more time-consuming than five additions. When combined with any known radix-2 type-III GDHT algorithm, the new algorithm also applies to length-2(q)3(P) sequences.
Resumo:
Little attention has been focussed on a precise definition and evaluation mechanism for project management risk specifically related to contractors. When bidding, contractors traditionally price risks using unsystematic approaches. The high business failure rate our industry records may indicate that the current unsystematic mechanisms contractors use for building up contingencies may be inadequate. The reluctance of some contractors to include a price for risk in their tenders when bidding for work competitively may also not be a useful approach. Here, instead, we first define the meaning of contractor contingency, and then we develop a facile quantitative technique that contractors can use to estimate a price for project risk. This model will help contractors analyse their exposure to project risks; and help them express the risk in monetary terms for management action. When bidding for work, they can decide how to allocate contingencies strategically in a way that balances risk and reward.
Resumo:
Current flowing in the global atmospheric electrical circuit (AEC) substantially decreased during the twentieth century. Fair-weather potential gradient (PG) observations in Scotland and Shetland show a previously unreported annual decline from 1920 to 1980, when the measurements ceased. A 25% reduction in PG occurred in Scotland 1920–50, with the maximum decline during the winter months. This is quantitatively explained by a decrease in cosmic rays (CR) increasing the thunderstorm-electrosphere coupling resistance, reducing the ionospheric potential VI. Independent measurements of VI also suggest a reduction of 27% from 1920–50. The secular decrease will influence fair weather atmospheric electrical parameters, including ion concentrations and aerosol electrification. Between 1920–50, the PG showed a negative correlation with global temperature, despite the positive correlation found recently between surface temperature and VI. The 1980s stabilisation in VI may arise from compensation of the continuing CR-induced decline by increases in global temperature and convective electrification.
Resumo:
Using a recent theoretical approach, we study how global warming impacts the thermodynamics of the climate system by performing experiments with a simplified yet Earth-like climate model. The intensity of the Lorenz energy cycle, the Carnot efficiency, the material entropy production, and the degree of irreversibility of the system change monotonically with the CO2 concentration. Moreover, these quantities feature an approximately linear behaviour with respect to the logarithm of the CO2 concentration in a relatively wide range. These generalized sensitivities suggest that the climate becomes less efficient, more irreversible, and features higher entropy production as it becomes warmer, with changes in the latent heat fluxes playing a predominant role. These results may be of help for explaining recent findings obtained with state of the art climate models regarding how increases in CO2 concentration impact the vertical stratification of the tropical and extratropical atmosphere and the position of the storm tracks.
Resumo:
OBJECTIVE: The anticipation of adverse outcomes, or worry, is a cardinal symptom of generalized anxiety disorder. Prior work with healthy subjects has shown that anticipating aversive events recruits a network of brain regions, including the amygdala and anterior cingulate cortex. This study tested whether patients with generalized anxiety disorder have alterations in anticipatory amygdala function and whether anticipatory activity in the anterior cingulate cortex predicts treatment response. METHOD: Functional magnetic resonance imaging (fMRI) was employed with 14 generalized anxiety disorder patients and 12 healthy comparison subjects matched for age, sex, and education. The event-related fMRI paradigm was composed of one warning cue that preceded aversive pictures and a second cue that preceded neutral pictures. Following the fMRI session, patients received 8 weeks of treatment with extended-release venlafaxine. RESULTS: Patients with generalized anxiety disorder showed greater anticipatory activity than healthy comparison subjects in the bilateral dorsal amygdala preceding both aversive and neutral pictures. Building on prior reports of pretreatment anterior cingulate cortex activity predicting treatment response, anticipatory activity in that area was associated with clinical outcome 8 weeks later following treatment with venlafaxine. Higher levels of pretreatment anterior cingulate cortex activity in anticipation of both aversive and neutral pictures were associated with greater reductions in anxiety and worry symptoms. CONCLUSIONS: These findings of heightened and indiscriminate amygdala responses to anticipatory signals in generalized anxiety disorder and of anterior cingulate cortex associations with treatment response provide neurobiological support for the role of anticipatory processes in the pathophysiology of generalized anxiety disorder.