975 resultados para G-PROTEIN
Resumo:
Mastoparans are tetradecapeptides found to be the major component of vespid venoms. A mastoparan toxin isolated from the venom of Anterhynchium flavomarginatum micado has been crystallized and X-ray diffraction data collected to 2.7 Angstrom resolution using a synchrotron-radiation source. Crystals were determined to belong to the space group P6(2)22 (P6(4)22). This is the first mastoparan to be crystallized and will provide further insights into the conformational significance of mastoparan toxins with respect to their potency and activity in G-protein regulation.
Resumo:
Mastoparans are tetradecapeptides found to be the major component of vespid venoms. These peptides present a wide spectrum of biological activities, such as mast cell degranulation, hemolytic activity and also reveals antimicrobial activity. A mastoparan toxin isolated from the venom of Anterhynchium flavomarginatum micado has been crystallized. At room temperature these crystals diffracted to 2.8 Angstrom resolution. However, upon cooling to cryogenic temperature around 85 K, the original resolution limit could be improved to 2.0 Angstrom. Crystals were determined to belong to the space group P3(1) (P3(2)). This is the first mastoparan to be crystallized and it will provide further insights in the conformational significance of mastoparan toxins, with respect to their potency and activity in G protein regulation. (C) 3001 Elsevier B.V. B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Anxiety is an emotional phenomenon, and normally it is interpreted as an adaptative behavior front to adversities. In its pathological form, anxiety can severely affect aspects related to the personal and professional life. Studies have shown a close relationship between anxiety disorders and aversive memory processing. Considering that the pharmacotherapy of anxiety disorders is still limited, innovative anxiolytic agents are needed. In this regard, neuropeptides systems are interesting therapeutic targets to the treatment of psychopathologies. Neuropeptide S (NPS), a 20-aminoacid peptide, is the endogenous ligand of a G-protein coupled receptor (NPSR), which has been reported to evoke hyperlocomotion, awakefull states, besides anxiolysis and memory improvements in rodents. This study aimed to investigate the effects of biperiden (BPR; an amnesic drug), diazepam (DZP; an anxiolytic drug) and NPS at three distinct times: pre-training, post-training, and pre-test, in order to assess anxiety and memory process in the same animal model. The elevated Tmaze (ETM) is an apparatus derived from the elevated plus-maze test, which consists of one enclosed and two open arms. The procedure is based on the avoidance of open spaces learned during training session, in which mice were exposed to the enclosed arm as many times as needed to stay 300 s. In the test session, memory is assessed by re-exposing the mouse to the enclosed arm and the latency to enter an open arm was recorded. When injected pre-training, BPR (1 mg/kg) impaired learning and memory processing; DZP (1 and 2 mg/kg) evoked anxiolysis, but only at the dose of 2 mg/kg impaired memory; and NPS 0.1 nmol induced anxiolysis without affecting memory. Post-training injection of DZP (2 mg/kg) or BPR (1 and 3 mg/kg) did not affect memory consolidation, while the post-trainning administration of NPS 1 nmol, but not 0.1 nmol, improved memory in mice. Indeed, pre-trainning administration of NPS 1 nmol did not prevent memory impairment elicited by BPR (2 mg/kg, injected before training). In the open field test, BPR 1 mg/kg and NPS 1 nmol induced hyperlocomotion in mice. In conclusion, the proposed ETM task is practical for the detection of the anxiolytic and amnesic effects of drugs. The anxiolytic and memory enhancement effects of NPS were detected in the ETM task, and reinforce the role of NPS system as an interesting therapeutic target to the treatment of anxiety disorders
Resumo:
Neuropeptide S (NPS) is the endogenous ligand of a G-protein coupled receptor. Preclinical studies have shown that NPSR receptor activation can promote arousal, anxiolytic-like behavioral, decrease in food intake, besides hyperlocomotion, which is a robust but not well understood phenomenon. Previous findings suggest that dopamine transmission plays a crucial role in NPS hyperactivity. Considering the close relationship between dopamine and Parkinson Disease (PD), and also that NPSR receptors are expressed on dopaminergic nuclei in the brain, the current study attempted to investigate the effects of NPS in motor deficits induced by intracerebroventricular (icv) administration of 6-OHDA and systemic administration of haloperidol. Motor deficits induced by 6-OHDA and haloperidol were evaluated on Swiss mice in the rota-rod and catalepsy test. Time on the rotating rod and time spent immobile in the elevated bar were measured respectively in each test. L-Dopa, a classic antiparkinsonian drug, and NPS were administrated in mice submitted to one of the animal models of PD related above. 6-OHDA injection evoked severe motor impairments in rota-rod test, while the cataleptic behavior of 6-OHDA injected mice was largely variable. The administration of L-Dopa (25 mg/kg) and NPS (0,1 and 1 nmol) reversed motor impairments induced by 6-OHDA in the rota-rod. Haloperidolinduced motor deficits on rota-rod and catalepsy tests which were reversed by L-Dopa (100 e 400 mg/kg), but not by NPS (0,1 and 1 nmol) administration. The association of L-Dopa 10 mg/kg and NPS 1 nmol was also unable to counteract haloperidol-induced motor deficits. To summarize, 6-OHDA-, but not haloperidol-, induced motor deficits were reversed by the central administration of NPS. These data suggest that NPS possibly facilitates dopamine release in basal ganglia, what would explain the overcome of motor performance promoted by NPS administration in animals pretreated with 6-OHDA, but not haloperidol. Finally, the presented findings point, for the first time, to the potential of NPSR agonist as an innovative treatment for PD.
Resumo:
Neuropeptide S (NPS) is an endogenous 20-aminoacid peptide which binds a G protein-coupled receptor named NPSR. This peptidergic system is involved in the modulation of several biological functions, such as locomotion, anxiety, nociception, food intake and motivational behaviors. Studies have shown the participation of NPSR receptors in mediating the hyperlocomotor effects of NPS. A growing body of evidence suggests the participation of adenosinergic, dopaminergic and CRF systems on the hyperlocomotor effects of NPS. Considering that little is known about the role of dopaminergic system in mediating NPS-induced hyperlocomotion, the present study aims to investigate the locomotor actions of intracerebroventricular (icv) NPS in mice pretreated with α-metil-p-tirosine (AMPT, inhibitor of dopamine synthesis), reserpine (inhibitor of dopamine vesicle storage) or sulpiride (D2 receptor antagonist) in the open field test. A distinct group of animals received the same pretreatments described above (AMPT, reserpine or sulpiride) and the hyperlocomotor effects of methylphenidate (dopamine reuptake inhibitor) were investigated in the open field. NPS and methylphenidate increased the mouse locomotor activity. AMPT per se did not change the locomotion of the animals, but it partially reduced the hyperlocomotion of methylphenidate. The pretreatment with AMPT did not affect the psychostimulant effects of NPS. Both reserpine and sulpiride inhibited the stimulatory actions of NPS and methylphenidate. These findings show that the hyperlocomotor effects of methylphenidate, but not NPS, were affected by the pretreatment with AMPT. Furthermore, methylphenidate- and NPS-induced hyperlocomotion was impaired by reserpine and sulpiride pretreatments. Together, data suggests that NPS can increase locomotion even when the synthesis of catecholamines was impaired. Additionally, the hyperlocomotor effects of NPS and methylphenidate depend on monoamines vesicular storaged, mainly dopamine, and on the activation of D2 receptors. The psychostimulant effects of NPS via activation of dopaminergic system display clinical significance on the treatment of diseases which involves dopaminergic pathways, such as Parkinson s disease and drug addiction
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The venom of Lonomia obliqua caterpillar may induce a hemorrhagic syndrome in humans, and blood incoagulability by afibrinogenemia when intravenously injected in laboratory animals. The possible antithrombotic and thrombolytic activities of L. obliqua caterpillar bristle extract (LOCBE) were evaluated in this study. The minimal intravenous dose of the extract necessary to induce afibrinogenemia and anticoagulation was 3.0 and 10.0 µg protein/kg body weight for rabbits and rats, respectively. In rabbits, this dose induced total blood incoagulability for at least 10 h and did not reduce the weight of preformed venous thrombi, in contrast to streptokinase (30,000 IU/kg). In rats, pretreatment with 5.0 and 10.0 µg/kg LOCBE prevented the formation of thrombi induced by venous stasis or by injury to the venous endothelium. The dose of 5.0 µg/kg LOCBE did not modify blood coagulation assay parameters but increased bleeding time and decreased plasma factor XIII concentration. When the extract was administered to rats at the dose of 10.0 µg/kg, the blood was totally incoagulable for 6 h. These data show that LOCBE was effective in preventing experimental venous thrombosis in rats, justifying further studies using purified fractions of the extract to clarify the mechanisms of this effect.
Resumo:
The effect of increased protein intake on the muscle mass gain, nitrogen balance and N-15-glycine kinetics was studied in six young, healthy subjects practitioners of strength training (> 2 years), without use of anabolic steroids and in agreement with the ethical principles of the research. All athletes received adequate diet (0.88g protein/kg/day) during 2 weeks prior the study (D1), and thereafter with diet providing 1.5g of protein/kg/day and 30kcal/g of protein (D2 diet) for the subsequent 2 weeks. Later on, they all received diet with 2.5g of protein/kg/day (D3 diet) and 30 kcal/g protein for the last two weeks. Body composition, food intake, blood biochemistry, nitrogen balance (NB) and 15N-glycine kinetics were determined at the beginning, after D1 (M0) and in the last days of the D2 (M1) and D3 (M2). The results showed at the end of the study (4 weeks) significant increase in muscle mass (1.63 +/- 0.9kg), without difference between D2 and D3. The NB followed the protein/energy consumption (M0 = -7.8g/day; M1 = 5.6g/day and D3 = 16.6g/day), the protein synthesis followed the NB, with M0 < (M1= M2) (M1 = 49.8 +/- 12.2g N/day and M2 = 52.5 +/- 14.0g N/day). Protein catabolism rate was similarly kept among diets. Thus, the results of the NB and N-15-glycine kinetics indicate that the recommended protein intake for these athletes is higher than the one for sedentary adults (0.88g/kg) and lower than 2.5g/kg, around 1.5g of protein/kg/day, with adjustment of the energy consumption to 30 kcal/g of protein.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Proteinase-activated receptor-2 (PAR2) belongs to a novel subfamily of G-protein-coupled receptors with seven-transmembrane domains. This receptor is widely distributed throughout the body and seems to be importantly involved in inflammatory processes. PAR2 can be activated by serine proteases such as trypsin, mast cell tryptase, and bacterial proteases, such as gingipain produced by Porphyromonas gingivalis. This review describes the current stage of knowledge of the possible mechanisms that link PAR2 activation with periodontal disease, and proposes future therapeutic strategies to modulate the host response in the treatment of periodontitis.
Resumo:
The insects of the order Hymenoptera ( bees, wasps, and ants) are classified in two groups, based on their life history: social and solitary. The venoms of the social Hymenoptera evolved to be used as defensive tools to protect the colonies of these insects from the attacks of predators. Generally they do not cause lethal effects but cause mainly inflammatory and/or immunological reactions in the victims of their stings. However, sometimes it is also possible to observe the occurrence of systemic effects like respiratory and/or kidney failure. Meanwhile, the venoms of solitary Hymenoptera evolved mainly to cause paralysis of the preys in order to permit egg laying on/within the prey's body; thus, some components of these venoms cause permanent/transient paralysis in the preys, while other components seem to act preventing infections of the food and future progenies. The peptide components of venoms from Hymenoptera are spread over the molar mass range of 1400 to 7000 da and together comprise up to 70% of the weight of freeze-dried venoms. Most of these toxins are linear polycationic amphipatic peptides with a high content of alpha-helices in their secondary structures. These peptides generally account for cell lysis, hemolysis, antibiosis, and sometimes promote the delivery of cellular activators/mediators through interaction with the G-protein receptor, and perhaps some of them are even immunogenic components. In addition to these peptides, the Hymenopteran venoms also may contain a few neurotoxins that target Na+ and/or Ca+2 channels or even the nicotinic ACh receptor. This review summarizes current knowledge of the biologically active Hymenoptera venoms.
Resumo:
The venom of the Neotropical social wasp Protopolybia exigua(Saussure) was fractionated by RP-HPLC resulting in the elution of 20 fractions. The homogeneity of the preparations were checked out by using ESI-MS analysis and the fractions 15, 17 and 19 (eluted at the most hydrophobic conditions) were enough pure to be sequenced by Edman degradation chemistry, resulting in the following sequences:Protopolybia MPI I-N-W-L-K-L-G-K-K-V-S-A-I-L-NH2 Protopolybia-MP II I-N-W-K-A-I-I-E-A-A-K-Q-A-L-NH2 Protopolybia-MP III I-N-W-L-K-L-G-K-A-V-I-D-A-L-NH2All the peptides were manually synthesized on-solid phase and functionally characterized. Protopolybia-MP I is a hemolytic mastoparan, probably acting on mast cells by assembling in plasma membrane, resulting in pore formation; meanwhile, the peptides Protopolybia-MP II and -MP III were characterized as a non-hemolytic mast cell degranulator toxins, which apparently act by virtue of their binding to G-protein receptor, activating the mast cell degranulation. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Recent interest in the annexin 1 field has come from the notion that specific G-protein-coupled receptors, members of the formyl-peptide receptor (FPR) family, appear to mediate the anti-inflammatory actions of this endogenous mediator. Administration of the annexin 1 N-terminal derived peptide Ac2-26 to mice after 25 min ischemia significantly attenuated the extent of acute myocardial injury as assessed 60 min postreperfusion. Evident at the dose of 1 mg/kg (similar to9 nmol per animal), peptide Ac2-26 cardioprotection was intact in FPR null mice. Similarly, peptide Ac2-26 inhibition of specific markers of heart injury (specifically myeloperoxidase activity, CXC chemokine KC contents, and endogenous annexin 1 protein expression) was virtually identical in heart samples collected from wild-type and FPR null mice. Mouse myocardium expressed the mRNA for FPR and the structurally related lipoxin A(4) receptor, termed ALX; thus, comparable equimolar doses of two ALX agonists (W peptide and a stable lipoxin A4 analog) exerted cardioprotection in wild-type and FPR null mice to an equal extent. Curiously, marked (>95%) blood neutropenia produced by an anti-mouse neutrophil serum did not modify the extent of acute heart injury, whereas it prevented the protection afforded by peptide Ac2-26. Thus, this study sheds light on the receptor mechanism(s) mediating annexin 1-induced cardioprotection and shows a pivotal role for ALX and circulating neutrophil, whereas it excludes any functional involvement of mouse FPR. These mechanistic data can help in developing novel therapeutics for acute cardioprotection.