920 resultados para Functionally graded materials
Resumo:
Centrally stimulated sweat rate produced by graded exercise until exhaustion was compared to the local sweat rate induced by pilocarpine, often used as a sweating index for healthy individuals. Nine young male volunteers (22 ± 4 years) were studied in temperate environment in two situations: at rest and during progressive exercise with 25 W increases every 2 min until exhaustion, on a cycle ergometer. In both situations, sweating was induced on the right forearm with 5 ml 0.5% pilocarpine hydrochloride applied by iontophoresis (1.5 mA, 5 min), with left forearm used as control. Local sweat rate was measured for 15 min at rest. During exercise, whole-body sweat rate was calculated from the body weight variation. Local sweat rate was measured from the time when heart rate reached 150 bpm until exhaustion and was collected using absorbent filter paper. Pharmacologically induced local sweat rate at rest (0.4 ± 0.2 mg cm-2 min-1) and mean exercise-induced whole-body sweat rate (0.4 ± 0.1 mg cm-2 min-1) were the same (P > 0.05) but were about five times smaller than local exercise-induced sweat rate (control = 2.1 ± 1.4; pilocarpine = 2.7 ± 1.2 mg cm-2 min-1), indicating different sudorific mechanisms. Both exercise-induced whole-body sweat rate (P < 0.05) and local sweat rate (P < 0.05) on control forearm correlated positively with pilocarpine-induced local sweat rate at rest. Assuming that exercise-induced sweating was a result of integrated physiological mechanisms, we suggest that local and whole-body sweat rate measured during graded exercise could be a better sweating index than pilocarpine.
Resumo:
The need for industries to remain competitive in the welding business, has created necessity to develop innovative processes that can exceed customer’s demand. Significant development in improving weld efficiency, during the past decades, still have their drawbacks, specifically in the weld strength properties. The recent innovative technologies have created smallest possible solid material known as nanomaterial and their introduction in welding production has improved the weld strength properties and to overcome unstable microstructures in the weld. This study utilizes a qualitative research method, to elaborate the methods of introducing nanomaterial to the weldments and the characteristic of the welds produced by different welding processes. The study mainly focuses on changes in the microstructural formation and strength properties on the welded joint and also discusses those factors influencing such improvements, due to the addition of nanomaterials. The effect of nanomaterial addition in welding process modifies the physics of joining region, thereby, resulting in significant improvement in the strength properties, with stable microstructure in the weld. The addition of nanomaterials in the welding processes are, through coating on base metal, addition in filler metal and utilizing nanostructured base metal. However, due to its insignificant size, the addition of nanomaterials directly to the weld, would poses complications. The factors having major influence on the joint integrity are dispersion of nanomaterials, characteristics of the nanomaterials, quantity of nanomaterials and selection of nanomaterials. The addition of nanomaterials does not affect the fundamental properties and characteristics of base metals and the filler metal. However, in some cases, the addition of nanomaterials lead to the deterioration of the joint properties by unstable microstructural formations. Still research are ongoing to achieve high joint integrity, in various materials through different welding processes and also on other factors that influence the joint strength.
Resumo:
Fiber-reinforced composite fixed dental prostheses – Studies of the materials used as pontics University of Turku, Faculty of Medicine, Institute of Dentistry, Department of Biomaterials Science, Finnish Doctoral Program in Oral Sciences – FINDOS, Annales Universitatis Turkuensis, Turku, Finland 2015 Fiber-reinforced composites (FRC), a non-metallic biomaterial, represent a suitable alternative in prosthetic dentistry when used as a component of fixed dental prostheses (FDPs). Some drawbacks have been identified in the clinical performance of FRC restorations, such as delamination of the veneering material and fracture of the pontic. Therefore, the current series of studies were performed to investigate the possibilities of enhancing the mechanical and physical properties of FRC FDPs by improving the materials used as pontics, to then heighten their longevity. Four experiments showed the importance of the pontic design and surface treatment in the performance of FRC FDPs. In the first, the load-bearing capacities of inlay-retained FRC FDPs with pontics of various materials and thicknesses were evaluated. Three different pontic materials were assessed with different FRC framework vertical positioning. Thicker pontics showed increased load-bearing capacities, especially ceramic pontics. A second study was completed investigating the influence of the chemical conditioning of the ridge-lap surface of acrylic resin denture teeth on their bonding to a composite resin. Increased shear bond strength demonstrated the positive influence of the pretreatment of the acrylic surfaces, indicating dissolution of the denture surfaces, and suggesting potential penetration of the monomer systems into the surface of denture teeth. A third study analyzed the penetration depth of different monomer systems on the acrylic resin denture teeth surfaces. The possibility of establishing a durable bond between acrylic pontics and FRC frameworks was demonstrated by the ability of monomers to penetrate the surface of acrylic resin denture teeth, measured by a confocal scanning type microscope. A fourth study was designed to evaluate the load-bearing capacities of FRC FDPs using the findings of the previous three studies. In this case, the performance of pre-shaped acrylic resin denture teeth used as pontics with different composite resins as filling materials was evaluated. The filling material influenced the load-bearing capacities, providing more durable FRC FDPs. It can be concluded that the mechanical and physical properties of FRC FDPs can be improved as has been shown in the development of this thesis. The improvements reported then might provide long lasting prosthetic solutions of this kind, positioning them as potentially permanent rehabilitation treatments. Key words: fiber-reinforced composite, fixed dental prostheses, inlay-retained bridges, adhesion, acrylic resin denture teeth, dental material.
Resumo:
A simple and low cost method to determine volatile contaminants in post-consumer recycled PET flakes was developed and validated by Headspace Dynamic Concentration and Gas Chromatography-Flame Ionization Detection (HDC-GC-FID). The analytical parameters evaluated by using surrogates include: correlation coefficient, detection limit, quantification limit, accuracy, intra-assay precision, and inter-assay precision. In order to compare the efficiency of the proposed method to recognized automated techniques, post-consumer PET packaging samples collected in Brazil were used. GC-MS was used to confirm the identity of the substances identified in the PET packaging. Some of the identified contaminants were estimated in the post-consumer material at concentrations higher than 220 ng.g-1. The findings in this work corroborate data available in the scientific literature pointing out the suitability of the proposed analytical method.
Resumo:
The aim of this study was to develop fettuccini type rice fresh pasta by cold extrusion. To produce the pasta, a 2² Central Composite Rotational Design was used, in which the effects of the addition of pre-gelatinized rice flour - PGRF (0-60%) and modified egg albumin - MEA (0-10%) were studied. The dependent variables were the results of the cooking test and of the instrumental texture. The optimum cooking time for all of the formulations of rice fresh pasta was 3 minutes. MEA had a greater effect on increasing the weight of the pasta when compared to that of PGRF. It was found that with the addition of PGRF increase in loss of solids in cooking water, whereas MEA exerted the opposite effect on this parameter. Moreover, the maximum value of MEA (10%) had an optimum effect on pasta firmness, while PGRF had a negative effect on this parameter. The maximum values of PGRF and MEA reduced the stickiness of the pasta. Based on these results and on the parameters considered as most important, the rice pasta with the best technological characteristics was that with the maximum levels of MEA (10%) and no addition of PGRF (0%). This product was submitted to sensory and microbiological analyses, with good results.
Resumo:
Starch derivatives of taro (Colocasia esculenta L. Schott) and rice were characterized as wall materials of orange oil (d-limonene) by spray drying. Native starches were initially hydrolyzed with HCl and then esterified. Succinylated starches were modified using a conventional method in a slurry and were extruded; whereas, the phosphorylated starches were modified using the extrusion process. Viscosity and solubility of starches reduced after acid hydrolysis, derivatization, and extrusion. The particle size of the wall materials ranged between 20.05 and 31.81 µm. The encapsulation efficiency of the phosphorylated taro, rice, and waxy corn starches was 96.9, 96.8 and 97.1% respectively, and 98.6, 98.1, and 98.8% for succynilated taro, rice, and waxy corn starches, respectively. Starch derivatives of taro and rice could potentially be used as wall materials of orange oil d-limonene.
Resumo:
Covering the grapevine rows to delay the maturity and harvest date became widely practiced in 'Sultana Seedless' vineyards. The research work was conducted to test different cover materials (polypropylene cross-stitch, life pack, mogul and transparent polyethylene) in respect to their effects on grape quality and storability. Harvest was delayed for one month in covered plots. Harvested grapes were packed and transferred to storage rooms after pre-cooling. During packing, the grape clusters were sealed in PE bags with sulphur dioxide pads. The grapes were stored for 90 days in the first year and 120 days in the second year, at -0.5ºC and 90% RH. All the grape clusters were healthy and of marketable quality after 90 days of storage period. In the first year, at the end of the storage, only those grapes harvested from the rows covered with polypropylene cross-stitch showed fungal growth. The sensory quality scores revealed a lower level of preference after 120 days of storage. The effects of the covering materials tested were similar regarding grape quality and storage performance except the transparent polyethylene that damaged the grapevine leaves.
Resumo:
The purpose of this study was to evaluate the oral health status of residents residing in 2 long-term care facilities and determine if dental hygiene education was required in order to improve their current oral health. The oral health status of 6 independent and 4 dependent individuals residing in 2 long-term care facilities was evaluated. In addition, the current oral health and disease prevention practices employed by 4 caregivers who were responsible for providing oral care to dependent residents in the long-term care facilities were evaluated. Furthermore, an evaluation of the oral care practices of independent residents who were responsible for providing their own care was conducted. Finally, the challenges that caregivers and independent residents faced when performing oral care were determined, and methodological changes were proposed. Using a generic qualitative research methodology, data collection was comprised of semi structured interviews, field observations, and documentation. The oral health status of the residents was reevaluated 3 months later. The findings of this study demonstrated an increase in plaque accumulation, gingival inflammation, and unhealthy gingival tissue colour changes among the residents over the 3-month period. The study revealed that poor oral health among the residents was a result of inadequate oral hygiene care techniques, difficulties accessing oral health care, financial limitations, insufficient care staff, insufficient time for personal care duties, lack of professional development, minimal interprofessional collaboration of health disciplines, and lack of perseverance on the part of the caregivers and residents. Overall, oral health is essential, and maintaining optimal oral health requires increased collaboration and communication between health care providers.
Resumo:
Perovskite type piezoelectric and manganese oxide materials have gained a lot of attention in the field of device engineering. Lead zirconium titananium oxide (PbZri.iTiiOa or PZT) is a piezoelectric material widely used as sensors and actuators. Miniaturization of PZTbased devices will not only perfect many existing products, but also opens doors to new applications. Lanthanum manganese oxides Lai-iAiMnOa (A-divalent alkaline earth such as Sr, Ca or Ba) have been intensively studied for their colossal magnetoresistance (CMR) properties that make them applicable in memory cells, magnetic and pressure sensors. In this study, we fabricate PZT and LSMO(LCMO) heterostructures on SrTiOa substrates and investigate their temperature dependency of resistivity and magnetization as a function of the thickness of LSMO(LCMO) layer. The microstructure of the samples is analysed through TEM. In another set of samples, we study the effect of application of an electric field across the PZT layer that acts as an external pressure on the manganite layer. This verifies the correlation of lattice distortion with transport and magnetic properties of the CMR materials.
Resumo:
Two new families of building blocks have been prepared and fully characterized and their coordination chemistry exploited for the preparation of molecule-based magnetic materials. The first class of compounds were prepared by exploiting the chemistry of 3,3'-diamino-2,2'-bipyridine together with 2-pyridine carbonyl chloride or 2-pyridine aldehyde. Two new ligands, 2,2'-bipyridine-3,3'-[2-pyridinecarboxamide] (Li, 2.3) and N'-6/s(2-pyridylmethyl) [2,2'bipyridine]-3,3'-diimine (L2, 2.7), were prepared and characterized. For ligand L4, two copper(II) coordination compounds were isolated with stoichiometrics [Cu2(Li)(hfac)2] (2.4) and [Cu(Li)Cl2] (2.5). The molecular structures of both complexes were determined by X-ray crystallography. In both complexes the ligand is in the dianionic form and coordinates the divalent Cu(II) ions via one amido and two pyridine nitrogen donor atoms. In (2.4), the coordination geometry around both Cu11 ions is best described as distorted trigonal bipyramidal where the remaining two coordination sites are satisfied by hfac counterions. In (2.5), both Cu(II) ions adopt a (4+1) distorted square pyramidal geometry. One copper forms a longer apical bond to an adjacent carbonyl oxygen atom, whereas the second copper is chelated to a neighboring Cu-Cl chloride ion to afford chloride bridged linear [Cu2(Li)Cl2]2 tetramers that run along the c-axis of the unit cell. The magnetic susceptibility data for (2.4) reveal the occurrence of weak antiferromagnetic interactions between the copper(II) ions. In contrast, variable temperature magnetic susceptibility measurements for (2.5) reveal more complex magnetic properties with the presence of ferromagnetic exchange between the central dimeric pair of copper atoms and weak antiferromagnetic exchange between the outer pairs of copper atoms. The Schiff-base bis-imine ligand (L2, 2.7) was found to be highly reactive; single crystals grown from dry methanol afforded compound (2.14) for which two methanol molecules had added across the imine double bond. The susceptibility of this ligand to nucleophilic attack at its imine functionality assisted via chelation to Lewis acidic metal ions adds an interesting dimension to its coordination chemistry. In this respect, a Co(II) quaterpyridine-type complex was prepared via a one-pot transformation of ligand L2 in the presence of a Lewis acidic metal salt. The rearranged complex was characterized by X-ray crystallography and a reaction mechanism for its formation has been proposed. Three additional rearranged complexes (2.13), (2.17) and (2.19) were also isolated when ligand (L2, 2.7) was reacted with transition metal ions. The molecular structures of all three complexes have been determined by X-ray crystallography. The second class of compounds that are reported in this thesis, are the two diacetyl pyridine derivatives, 4-pyridyl-2,6-diacetylpyridine (5.5) and 2,2'-6,6'-tetraacetyl-4,4'-bipyridine (5.15). Both of these compounds have been designed as intermediates for the metal templated assembly of a Schiff-base N3O2 macrocycle. From compound (5.15), a covalently tethered dimeric Mn(II) macrocyclic compound of general formula {[Mn^C^XJCl-FkO^Cl-lO.SFbO (5.16) was prepared and characterized. The X-ray analysis of (5.16) reveals that the two manganese ions assume a pentagonal-bipyramidal geometry with the macrocycle occupying the pentagonal plane and the axial positions being filled by a halide ion and a H2O molecule. Magnetic susceptibility data reveal the occurrence of antiferromagnetic interactions between covalently tethered Mn(II)-Mn(II) dimeric units. Following this methodology a Co(II) analogue (5.17) has also been prepared which is isostructural with (5.16).
Resumo:
Raman scattering in the region 20 to 100 cm -1 for fused quartz, "pyrex" boro-silicate glass, and soft soda-lime silicate glass was investigated. The Raman spectra for the fused quartz and the pyrex glass were obtained at room temperature using the 488 nm exciting line of a Coherent Radiation argon-ion laser at powers up to 550 mW. For the soft soda-lime glass the 514.5 nm exciting line at powers up to 660 mW was used because of a weak fluorescence which masked the Stokes Raman spectrum. In addition it is demonstrated that the low-frequency Raman coupling constant can be described by a model proposed by Martin and Brenig (MB). By fitting the predicted spectra based on the model with a Gaussian, Poisson, and Lorentzian forms of the correlation function, the structural correlation radius (SCR) was determined for each glass. It was found that to achieve the best possible fit· from each of the three correlation functions a value of the SCR between 0.80 and 0.90 nm was required for both quartz and pyrex glass but for the soft soda-lime silicate glass the required value of the SCR. was between 0.50 and 0.60 nm .. Our results support the claim of Malinovsky and Sokolov (1986) that the MB model based on a Poisson correlation function provides a universal fit to the experimental VH (vertical and horizontal polarizations) spectrum for any glass regardless of its chemical composition. The only deficiency of the MB model is its failure to fit the experimental depolarization spectra.
Resumo:
The atomic mean square displacement (MSD) and the phonon dispersion curves (PDC's) of a number of face-centred cubic (fcc) and body-centred cubic (bcc) materials have been calclllated from the quasiharmonic (QH) theory, the lowest order (A2 ) perturbation theory (PT) and a recently proposed Green's function (GF) method by Shukla and Hiibschle. The latter method includes certain anharmonic effects to all orders of anharmonicity. In order to determine the effect of the range of the interatomic interaction upon the anharmonic contributions to the MSD we have carried out our calculations for a Lennard-Jones (L-J) solid in the nearest-neighbour (NN) and next-nearest neighbour (NNN) approximations. These results can be presented in dimensionless units but if the NN and NNN results are to be compared with each other they must be converted to that of a real solid. When this is done for Xe, the QH MSD for the NN and NNN approximations are found to differ from each other by about 2%. For the A2 and GF results this difference amounts to 8% and 7% respectively. For the NN case we have also compared our PT results, which have been calculated exactly, with PT results calculated using a frequency-shift approximation. We conclude that this frequency-shift approximation is a poor approximation. We have calculated the MSD of five alkali metals, five bcc transition metals and seven fcc transition metals. The model potentials we have used include the Morse, modified Morse, and Rydberg potentials. In general the results obtained from the Green's function method are in the best agreement with experiment. However, this improvement is mostly qualitative and the values of MSD calculated from the Green's function method are not in much better agreement with the experimental data than those calculated from the QH theory. We have calculated the phonon dispersion curves (PDC's) of Na and Cu, using the 4 parameter modified Morse potential. In the case of Na, our results for the PDC's are in poor agreement with experiment. In the case of eu, the agreement between the tlleory and experiment is much better and in addition the results for the PDC's calclliated from the GF method are in better agreement with experiment that those obtained from the QH theory.
Resumo:
Nanoporous materials with large surface area and well-ordered pore structure have been synthesized. Thiol groups were grafted on the materials' surface to make heavy metal ion pre-concentration media. The adsorption properties ofthe materials were explored. Mercury, gold and silver can be strongly adsorbed by these materials, even in the presence of alkaline earth metal ion. Though the materials can adsorb other heavy metal ions such as lead and copper, they show differential adsorption ability when several ions are present in solution. The adsorption sequence is: mercury> == silver> copper » lead and cadmium. In the second part of this work, the memory effects of mercury, gold, silver and boron were investigated. The addition of 2% L-cysteine and 1% thiourea eliminates the problems of the three metal ions completely. The wash-out time for mercury dropped from more than 20 minutes to 18 seconds, and the wash-out time for gold decreased from more than 30 minutes to 49 seconds. The memory effect of boron can be reduced by the use of mannitol.
Resumo:
We have calculated the equation of state and the various thermodynamic properties of monatomic fcc crystals by minimizing the Helmholtz free energy derived in the high temperature limit for the quasiharmonic theory, QH, and the lowest-order (cubic and quartic), 'A2, anharmonic terms of the perturbation theory, PT. The total energy in each case is obtained by adding the static energy. The calculation of the thermal properties was carried out for a nearest-neighbour central-force model of the fcc lattice by means of the appropriate thermodynamic relations. We have calculated the lattice constant, the thermal expansion, the coefficient of volume expansion, the specific heat at constant volume and at constant pressure, the isothermal and adiabatic bulk moduli, and the Griineisen parameter, for the rare-gas solids Kr and Xe, and gold. Morse potential and modified Morse potential were each used to represent the atomic interaction for the three fcc materials. For most of the calculated thermodynamic properties from the QH theory, the results for Kr and Xe with the modified Morse potential show an improvement over the results for the Morse potential when compared with the experimental data. However, the results of the 'A 2 equation of state with the modified Morse potential are in good agreement with experiment only in the case of the specific heat at constant volume and at constant pressure. For Au we have calculated the lattice contribution from the QH and 'A 2 PT and the electronic contribution to the thermal properties. The electronic contribution was taken into account by using the free electron model. The results of the thermodynamic properties calculated with the modified Morse potential were similar to those obtained with the Morse potential. U sing the minimized equation of state we also calculated the Mossbauer recoilless fraction for Kr and Xe and the Debye-Waller factor (DWF) for Pb, AI, eu, Ag, and Au. The Mossbauer recoilless fraction was obtained for the above two potentials and Lennard-Jones potential. The L-J potential gives the best agreement with experiment for Kr. No experimental data exists for Xe. At low temperature the calculated DWF results for Pb, AI, and eu show a good agreement with experimental values, but at high temperature the experimental DWF results increase very rapidly. For Ag the computed values were below the expected results at all temperatures. The DWF results of the modified Morse potential for Pb, AI, eu and Ag were slightly better than those of the Morse potential. In the case of Au the calculated values were in poor agreement with experimental results. We have calculated the quasiharmonic phonon dispersion curves for Kr, Xe, eu, Ag, and Au. The calculated and experimental results of the frequencies agree quite well for all the materials except for Au where the longitudinal modes show serious discrepancies with the experimental results. In addition, the two lowest-order anharmonic contributions to the phonon frequency were derived using the Green's function method. The A 2 phonon dispersion curves have been calculated only for eu, and the results were similar to those of the QH dispersion curves. Finally, an expression for the Griineisen parameter "( has been derived from the anharmonic frequencies, and calculated for these materials. The "( results are comparable with those obtained from the thermodynamic definition.
Resumo:
The synthesis of 3-ethynylthienyl- (2.07), 3-ethynylterthienyl- (2.19) substituted qsal [qsalH = N-(8-quinolyl)salicylaldimine] and 3,3' -diethynyl-2,2' -bithienyl bridging bisqsal (5.06) ligands are described along with the preparation and characterization of eight cationic iron(III) complexes containing these ligands with a selection of counteranions [(2.07) with: SCN- (2.08), PF6- (2.09), and CI04- (2.10); (2.19) with PF6 - (2.20); (5.06) with: cr (5.07), SeN- (5.08), PF6- (5.09), and CI04- (5.10)]. Spin-crossover is observed in the solid state for (2.08) - (2.10) and (5.07) - (5.10), including a ve ry rare S = 5/2 to 3/2 spin-crossover in complex (2.09). The unusal reduction of complex (2.10) produces a high-spin iron(I1) complex (2.12). Six iron(II) complexes that are derived from thienyl analogues of bispicen [bispicen = bis(2-pyridylmethyl)-diamine] [2,5-thienyl substituents = H- (3.11), Phenyl- (3.12), 2- thienyl (3.13) or N-phenyl-2-pyridinalimine ligands [2,5-phenyl substituents = diphenyl (3.23), di(2-thienyl) (3.24), 4-phenyl substituent = 3-thienyl (3.25)] are reported Complexes (3.11), (3.23) and (3.25) display thermal spin-crossover in the solid state and (3.12) remains high-spin at all temperatures. Complex (3.13) rearranges to form an iron(II) complex (3.14) with temperature dependent magnetic properties be s t described as a one-dimensional ferromagnetic chain, with interchain antiferromagnetic interactions and/or ZFS dominant at low temperatures. Magnetic succeptibility and Mossbauer data for complex (3.24) display a temperature dependent mixture of spin isomers. The preparation and characterization of two cobalt(II) complexes containing 3- ethynylthienyl- (4.04) and 3-ethynylterhienyl- (4.06) substituted bipyridine ligands [(4.05): [Co(dbsqh(4.04)]; (4.07): [Co(dbsq)2(4.06)]] [dbsq = 3,5-dbsq=3,5-di-tert-butylI ,2-semiquinonate] are reported. Complexes (4.05) and (4.07) exhibit thermal valence tautomerism in the solid state and in solution. Self assembly of complex (2.10) into polymeric spheres (6.11) afforded the first spincrossover, polydisperse, micro- to nanoscale material of its kind. . Complexes (2.20), (3.24) and (4.07) also form polymers through electrochemical synthesis to produce hybrid metaUopolymer films (6.12), (6.15) and (6.16), respectively. The films have been characterized by EDX, FT-IR and UV-Vis spectroscopy. Variable-temperature magnetic susceptibility measurements demonstrate that spin lability is operative in the polymers and conductivity measurements confirm the electron transport properties. Polymer (6.15) has a persistent oxidized state that shows a significant decrease in electrical resistance.