882 resultados para Fruit Drinks
Resumo:
Many animals behave as robbers or thieves of floral resources, causing damage to floral tissues or consuming resources used to attract pollinators, or producing effects similar to emasculation by reducing the pollen load in the anthers (which generally results in losses in terms of sexual reproduction). The present work examined the direct and indirect impacts caused by nectar-robbing on the reproductive success of Sparattosperma leucanthum. Different manipulations of the flowers were tested to determine if fruit production was influenced by the perforations made in the floral tissues (direct damage), and if there were changes in visitation frequencies or in the behaviors of effective pollinators (indirect damage). Perforations made by nectar robbers did not lower the reproductive success of the plant species studied. The bee Trigona spinipes was the most frequent visitor and caused the largest perforations in the calyx and corolla of S. leucanthum. Additionally, we noted the occurrence of pollen theft by this same bee in flowers that had been protected against nectar-robbing. These results suggest that if S. leucanthum had developed a mechanism of resistance to robbery by T spinipes it would probably have experienced even lower pollination levels as a result of reductions in the quantities of pollen available for transfer by effective pollinators. We were not able to evaluate if nectar depletion through robbery modified the behavior of the effective pollinators (bumblebees of the genus Bombus).
Resumo:
To investigate the movement of seeds transported by fruit-eating birds in an agricultural, fragmented landscape of the Atlantic forest of southeast Brazil, I asked which bird species are the main seed dispersers in such environment, and how they use the available habitats (small forest fragments, forest thickets, live fences, isolated trees, and active pastures) where they are most likely to drop the seeds they swallow the relative importance of fruit-eating birds as seed vectors was evaluated based on the number of fruit species eaten, the number of visits, and visitation rate to fruiting plants. Habitat use was accessed by recording the habitats where birds were seen or heard during walks conducted throughout the study area. Sixteen plant species were observed during 308.3 plant-hours. Forty-one bird species were observed eating fruits in a total of 830 visits to fruiting plants. Sayaca Tanagers (Thraupis sayaca) and Pale-breasted Thrushes (Turdus leucomelas) ate the greatest number of fruit species, were the most frequent plant visitors in terms of number and rate of visits, and had a broad range of habitat use. These two species and the Rusty-margined Guan (Penelope superciliaris), which is able to swallow large fruits with large seeds that smaller bird species cannot cat, likely have a great contribution to the movement of seeds throughout this highly degraded landscape.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We investigated effects of fruit colour (red, black or white), habitat (anthropogenic edges and forest interior) and fragment size on the removal of artificial fruits in semideciduous forests in south-east Brazil. Eight forest fragments ranging from 251 to 36,000 ha were used. We used artificial fruits, which were placed on shrubs between I and 2 m in height and checked after 48 and 96 h for peck marks in the fruits. All three variables affected the probability of consumption of our fruit models. Red and black fruits were statistically more pecked than the white fruits. The probability of fruit consumption was lower in the interior than at the edge and less in small than in large fragments. However, the decrease fruit consumption in small compared with large fragments was more accentuated for red and black fruits than for white fruits. Our results show that habitat reduction and edges affect the chances of a fruit being eaten by birds, which may ultimately affect plant fitness in forest fragments. (C) 2003 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fruit traits evolve in response to an evolutionary triad between plants, seed dispersers, and antagonists that consume fruits but do not disperse seeds. The defense trade-off hypothesis predicts that the composition of nutrients and of secondary compounds in fruit pulp is shaped by a trade-off between defense against antagonists and attraction to seed dispersers. The removal rate model of this hypothesis predicts a negative relationship between nutrients and secondary compounds, whereas the toxin-titration model predicts a positive relationship. To test these alternative models, we evaluated whether the contents of nutrients and secondary compounds can be used to predict fruit removal by mutualists and pathogens in 14 bird-dispersed plants on a subtropical island in São Paulo state, southeastern Brazil. We selected eight to ten individuals of each species and prevented fruit removal by covering four branches with a net and left fruits on four other branches available to both, vertebrate fruit consumers and pathogens. The persistence of ripe fruits was drastically different among species for bagged and open fruits, and all fruit species persisted longer when protected against seed dispersers. We found that those fruits that are quickly removed by vertebrates are nutrient-rich, but although the attack rate of pathogens is also high, these fruits have low contents of quantitative defenses such as tannins and phenols. Thus, we suggest that the fruit removal rate by seed dispersers is the primary factor selecting the levels of fruit defense. Likewise, nutrient-poor fruits have low removal of seed dispersers and low probability of attack by pathogens. These species retain ripe fruits in an intact condition for a prolonged period because they are highly defended by secondary compounds, which reduce overall attractiveness. However, this strategy might be advantageous for plants that depend on rare or unreliable dispersers.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background and aims Late-acting self-incompatibility (LSI). in which selfed flowers fail to form fruits despite apparently successful growth of the pollen tubes to the ovules, is a contentious and still poorly understood phenomenon. Some studies have indicated pollen tube-pistil interactions, and major gene control. Others favour an early acting inbreeding depression explanation.Methods Experimental pollinations, including selfs (in a subsample of which the style was cut before pollen tubes reached the ovary), chase self/cross-pollinations, crosses, and mixed self/cross-pollinations were used to study floral/pistil longevity and effect on fruit set and seed yield in two Ceiba species known to have LSI.Results Self-pollinations, including those with a cut style, had extended floral longevity compared with unpollinated flowers. Chase pollinations in which cross-pollen was applied up to 3 h after selfing set fruits, but with reduced seed set compared with crosses. Those with cross-pollen applied at 4 and 8 h after self-pollination all failed to set fruits. Flowers subjected to 1 : 1 and 2 : 1 self/cross-pollinations all produced fruits but again with a significantly lower seed set compared with crosses.Conclusions Extended floral longevity initiated with self-pollen tubes growing in the style indicates some kind of pollen tube-pistil interaction. Fruit set only in chase pollinations up to 3 h implies that self-pollen tubes either grow more slowly in the style or penetrate ovules more slowly on arrival at the ovary compared with cross-tubes. This agrees with previous observations indicating that the incidence of penetrated ovules is initially lower in selfed compared with crossed pistils. However, the low seed yield from mixed pollinations indicates that self- and cross-pollen tubes arrive at the ovary and penetrate ovules more or less simultaneously. Possible explanations for these discordant results are discussed. (C) 2004 Annals of Botany Company.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Origin and importance. Acerola, or Malpighia emarginata D. C., is native to the Caribbean islands, Central America and the Amazonian region. More recently, it has been introduced in subtropical areas (Asia, India and South America). The vitamin C produced by acerola is better absorbed by the human organism than synthetic ascorbic acid. Exportation of acerola crops is a potential alternative source of income in agricultural businesses. In Brazil, the commercial farming of acerola is quite recent. Climatic conditions. Acerola is a rustic plant. It can resist temperatures close to 0 degrees C, but it is well adapted to temperatures around 26 degrees C with rainfall between (1200 and 1600) mm per year. Fruit characteristics. Acerola fruit is drupaceous, whose form can vary from round to conic. When ripe, it can be red, purple or yellow. The fruit weight varies between (3 and 16) g. Maturation. Acerola fruit presents fast metabolic activity and its maturation occurs rapidly. When commercialised in ambient conditions, it requires fast transportation or the use of refrigerated containers to retard its respiration and metabolism partially. Production and productivity. Flowering and fruiting are typically in cycles associated with rain. Usually, they take place in 25-day cycles, up to 8 times per year. The plant can be propagated by cuttings, grafting or seedlings. Harvest. Fruits produced for markets needs to be harvested at its optimal maturation stage. For distant markets, they need to be packed in boxes and piled up in low layers; transportation should be done in refrigerated trucks in relatively high humid conditions. Biochemical constituents. Acerola is the most important natural source of vitamin C [(1000 to 4500) mg.100(-1) g of pulp], but it is also rich in pectin and pectolytic enzymes, carotenoids, plant fibre, vitamin B, thiamin, riboflavin, niacin, proteins and mineral salts. It has also shown active anti-fungal properties. Products and market. Acerola is used in the production of juice, soft drinks, gums and liqueurs. The USA and Europe are great potential markets. In Europe, acerola extracts are used to enrich pear or apple juices. In the USA, they are used in the pharmaceutical industry. Conclusions. The demand for acerola has increased significantly in recent years because of the relevance of vitamin C in human health, coupled with the use of ascorbic acid as an antioxidant in food and feed. Acerola fruit contains other significant components, which are likely to lead to a further increase in its production and trade all over the world.