726 resultados para Foundry engineering
Resumo:
Scaffolds of chitosan and collagen can offer a biological niche for the growth of adipose derived stem cells (ADSC). The objective of this work was to characterize the physico-chemical properties of the scaffolds and the ADSC, as well as their interactions to direct influences of the scaffolds on the behavior of ADSC. The methodology included an enzymatic treatment of fat obtained by liposuction by collagenase, ASDC immunophenotyping, cell growth kinetics, biocompatibility studies of the scaffolds analyzed by the activity of alkaline phosphatase (AP), nitric oxide (NO) determination by the Griess-Saltzman reaction, and images of both optical and scanning electron microscopy of the matrices. The extent of the crosslinking of genipin and glutaraldehyde was evaluated by ninhydrin assays, solubility tests and degradation of the matrices. The results showed that the matrices are biocompatible, exhibit physical and chemical properties needed to house cells in vivo and are strong stimulators of signaling proteins (AP) and other molecules (NO) which are important in tissue healing. Therefore, the matrices provide a biological niche for ADSC adhesion, proliferation and cells activities.
Resumo:
The greatest challenge of undergraduate engineering courses is to encourage creativity, cooperation with other students, teamwork, and motivation in the first years of their courses. While students have little or no contact with advanced disciplines, it is very difficult to attract their interests and encourage them to develop the skills in their undergraduate courses. This work aims to achieve these objectives through a mini-factory project involving the construction of a production line of ceramic tiles on a laboratory scale, from the ceramic processing using raw materials to the shipping of the final product. Having been given an established monthly demand for ceramic tiles, the students determined the construction requirements of the mini-factory, as they have created the layout, including the processing equipment, the dimensioning of equipment, and its operational structure. This article intends to describe the successful creation of the ceramic tile mini-factory, including the objectives, benefits, and inherent difficulties of the process and the receptivity of the exercise by the students involved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study evaluated the effects of homogenous demineralized dentin matrix (HDDM) slices and platelet-rich plasma (PRP) in surgical defects created in the parietal bones of alloxan-induced diabetic rabbits, treated with a guided bone regeneration technique. Biochemical, radiographic, and histological analyses were performed. Sixty adult New Zealand rabbits were divided into five groups of 12: normoglycaemic (control, C), diabetic (D), diabetic with a PTFE membrane (DM), diabetic with a PTFE membrane and HDDM slices (DM-HDDM), and diabetic with PTFE membrane and PRP (DM-PRP). The quantity and quality of bone mass was greatest in the DM-HDDM group (respective radiographic and histological analyses: at 15 days, 71.70±16.50 and 50.80±1.52; 30 days, 62.73±16.51 and 54.20±1.23; 60 days, 63.03±11.04 and 59.91±3.32; 90 days, 103.60±24.86 and 78.99±1.34), followed by the DM-PRP group (respective radiographic and histological analyses: at 15 days 23.00±2.74 and 20.66±7.45; 30 days 31.92±6.06 and 25.31±5.59; 60 days 25.29±16.30 and 46.73±2.07; 90 days 38.10±14.04 and 53.38±9.20). PRP greatly enhanced vascularization during the bone repair process. Abnormal calcium metabolism was statistically significant in the DM-PRP group (P<0.001) for all four time intervals studied, especially when compared to the DM-HDDM group. Alkaline phosphatase activity was significantly higher in the DM-HDDM group (P<0.001) in comparison to the C, D, and DM-PRP groups, confirming the findings of intense osteoblastic activity and increased bone mineralization. Thus, HDDM promoted superior bone architectural microstructure in bone defects in diabetic rabbits due to its effective osteoinductive and osteoconductive activity, whereas PRP stimulated angiogenesis and red bone marrow formation.
Resumo:
The objective of this paper is to introduce a study on the academic trajectory and professional profile of production engineers who graduated in a traditional and renowned Brazilian University (School of Engineering at Bauru – FEB). The study was conducted with the first three classes of undergraduates in the production engineering program at FEB/UNESP. A 50% response rate was obtained and with the data collected it was possible to characterize the professional profile of the students and outline their academic trajectory. According to the sample, the main result is that the curricular grid is the main criterion of similarity in student education, thus, the focus on program improvements should focus on the curricular grid. Tendencies are also pointed out to guide the search for improvements in the academic trajectory of production engineering students.
Resumo:
This article analyzes the inclusion of the issue of “environmental management” in the department of Production Engineering of the “Alfa” School of Engineering. For this, a case study was conducted at the School of "Alpha" Engineering, with a focus on the area of Production Engineering. Professors were interviewed; documents were reviewed as well as information collected from direct observations by of one of the authors of this article. It was observed that the department of Production Engineering at the Alpha School of Engineering has been developing activities covering all those aspects proposed by Jabbour [8]. "Environmental management" has been included in the curriculums of: (a) Teaching: in the creation of undergraduate courses (obligatory) and graduate Master's degree (optional), (b) Research: formalization of research groups in environmental management for the creation of master’s post graduation research, formalization of environmental management as one of the subjects that should be chosen by candidates for a Professorship in the area of production engineering; (c) Extension: Course in Environmental Management, Symposium (which in recent years has been focusing on environmental issues), creation of sustainability indicators for universities, (d) University Management: initiatives to raise awareness, distribution of reusable mugs and installation of special bins for selective collection in the Campus.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Baldwin, Virginia (2003) "A Study of Interdisciplinary Research Needs: Results from Input of Faculty in Six Engineering Departments in Prioritizing Serial Subscriptions," American Society for Engineering Education Conference, June 23, 2003, Nashville, TN,
Resumo:
Fibrous materials have morphological similarities to natural cartilage extracellular matrix and have been considered as candidate for bone tissue engineering scaffolds. In this study, we have evaluated a novel electrospun chitosan mat composed of oriented sub-micron fibers for its tensile property and biocompatibility with chondrocytes (cell attachment, proliferation and viability). Scanning electronic microscope images showed the fibers in the electrospun chitosan mats were indeed aligned and there was a slight cross-linking between the parent fibers. The electrospun mats have significantly higher elastic modulus (2.25 MPa) than the cast films (1.19 MPa). Viability of cells on the electrospun mat was 69% of the cells on tissue-culture polystyrene (TCP control) after three days in culture, which was slightly higher than that on the cast films (63% of the TCP control). Cells on the electrospun mat grew slowly the first week but the growth rate increased after that. By day 10, cell number on the electrospun mat was almost 82% that of TCP control, which was higher than that of cast films (56% of TCP). The electrospun chitosan mats have a higher Young’s modulus (P <0.01) than cast films and provide good chondrocyte biocompatibility. The electrospun chitosan mats, thus, have the potential to be further processed into three-dimensional scaffolds for cartilage tissue repair.
Resumo:
The aim of this study was to characterize the physicochemical properties of bacterial cellulose (BC) membranes functionalized with osteogenic growth peptide (OGP) and its C-terminal pentapeptide OGP[10-14], and to evaluate in vitro osteoinductive potential in early osteogenesis, besides, to evaluate cytotoxic, genotoxic and/or mutagenic effects. Peptide incorporation into the BC membranes did not change the morphology of BC nanofibers and BC crystallinity pattern. The characterization was complemented by Raman scattering, swelling ratio and mechanical tests. In vitro assays demonstrated no cytotoxic, genotoxic or mutagenic effects for any of the studied BC membranes. Culture with osteogenic cells revealed no difference in cell morphology among all the membranes tested. Cell viability/proliferation, total protein content, alkaline phosphatase activity and mineralization assays indicated that BC-OGP membranes enabled the highest development of the osteoblastic phenotype in vitro. In conclusion, the negative results of cytotoxicity, genotoxicity and mutagenicity indicated that all the membranes can be employed for medical supplies, mainly in bone tissue engineering/regeneration, due to their osteoinductive properties.
Resumo:
This paper presents a method for transforming the information of an engineering geological map into useful information for non-specialists involved in land-use planning. The method consists of classifying the engineering geological units in terms of land use capability and identifying the legal and the geologic restrictions that apply in the study area. Both informations are then superimposed over the land use and a conflict areas map is created. The analysis of these data leads to the identification of existing and forthcoming land use conflicts and enables the proposal of planning measures on a regional and local scale. The map for the regional planning was compiled at a 1:50,000 scale and encompasses the whole municipal land area where uses are mainly rural. The map for the local planning was compiled at a 1:10,000 scale and encompasses the urban area. Most of the classification and operations on maps used spatial analyst tools available in the Geographical Information System. The regional studies showed that the greater part of Analandia's territory presents appropriate land uses. The local-scale studies indicate that the majority of the densely occupied urban areas are in suitable land. Although the situation is in general positive, municipal policies should address the identified and expected land use conflicts, so that it can be further improved.
Resumo:
According to recent research carried out in the foundry sector, one of the most important concerns of the industries is to improve their production planning. A foundry production plan involves two dependent stages: (1) determining the alloys to be merged and (2) determining the lots that will be produced. The purpose of this study is to draw up plans of minimum production cost for the lot-sizing problem for small foundries. As suggested in the literature, the proposed heuristic addresses the problem stages in a hierarchical way. Firstly, the alloys are determined and, subsequently, the items that are produced from them. In this study, a knapsack problem as a tool to determine the items to be produced from furnace loading was proposed. Moreover, we proposed a genetic algorithm to explore some possible sets of alloys and to determine the production planning for a small foundry. Our method attempts to overcome the difficulties in finding good production planning presented by the method proposed in the literature. The computational experiments show that the proposed methods presented better results than the literature. Furthermore, the proposed methods do not need commercial software, which is favorable for small foundries. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A recent addition to the arsenal of tools for glycome analysis is the use of metabolic labels that allow covalent tagging of glycans with imaging probes. In this work we show that N-azidoglucosamine was successfully incorporated into glycolipidic structures of Plasmodium falciparum intraerythrocytic stages. The ability to tag glycoconjugates selectively with a fluorescent reporter group permits TLC detection of the glycolipids providing a new method to quantify dynamic changes in the glycosylation pattern and facilitating direct mass spectrometry analyses. Presence of glycosylphosphatidylinositol and glycosphingolipid structures was determined in the different extracts. Furthermore, the fluorescent tag was used as internal matrix for the MALDI experiment making even easier the analysis. (C) 2012 Elsevier B.V. All rights reserved.