615 resultados para Fossils


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Known Early-Middle Miocene terrestrial strata of southern New Zealand are represented by alluvial plain and lacustrine sediments. A vertebrate fauna including fish, ducks, and crocodiles populated Lake Manuherikia, with abundant mussels, gastropods, and stromatolites occupying the near-shore areas of the lake. A diverse vegetation covered the surrounding broad fluvial plains that extended to the coastal margins. Initially this was largely rainforest, which varied according to habitat and to changing climate. In particular, the climate and ecology appear to have fluctuated across the two major thresholds of fire/no-fire and of peat accumulation and no-peat. A major climate change, possibly the sharp global deterioration in conditions at about 14 Ma, profoundly changed the vegetation. Rainforest continuity fragmented, and herblands became widespread. Leaf fossils effectively disappear from the record at this time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper examines issues encountered when developing new tourism services generally, and specific aspects relating to the development of remote area dinosaur fossil fields for tourism. It studies two sites, one in the USA and one in Australia. Access to both sites is by minor roads, and both sites are characterised by long drives separating the sites from small communities that offer limited infrastructure and few other attractions for visitors. In both areas, however, tourism is seen as one of the few possible ways to sustain existing communities in the face of declining primary-industry-based employment. In general, tourists visiting these areas are on touring holidays of two weeks’ duration or more where the attraction is the general attributes of the region as well as to a lesser extent their interest in dinosaur fossils. These provide a potential resource for remote-region economic development through commodification as a new tourism attraction. Development of dinosaur fossil finds as a tourism resource is conceptualised here as new service development. Developing new tourism services, especially in remote regions, is challenging and has not been well examined in the tourism literature. The new service development process used in this case study first examines the characteristics of the existing tourists travelling through the region. The characteristics of a number of potential market segments currently interested in dinosaur fossils were then examined and contrasted with the existing market. This is conceptualised on a specialist-generalist spectrum of interest in fossils. A study of the tourist service features associated with dinosaur fossil tourism in remote regions of the USA was conducted, leading to the identification of a number of possible incremental development opportunities. The paper then takes a strategic approach to examining potential new tourism service development related to dinosaur fossils in remote regions of Queensland, Australia. In particular, it describes use of information about existing services in similar regions as the basis for ideas about development as well as comparison between existing and potential markets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Annonaceae and Myristicaceae, the two largest families of Magnoliales, are pantropical groups of uncertain geographic history. The most recent morphological and molecular phylogenetic analyses identify the Asian-American genus Anaxagorea as sister to all other Annonaceae and the ambavioids, consisting of small genera endemic to South America, Africa, Madagascar, and Asia, as a second branch. However, most genera form a large clade in which the basal lines are African, and South American and Asian taxa are more deeply nested. Although it has been suggested that Anaxagorea was an ancient Laurasian line, present data indicate that this genus is basically South American. These considerations may mean that the family as a whole began its radiation in Africa and South America in the Late Cretaceous, when the South Atlantic was narrower, and several lines dispersed from Africa-Madagascar into Laurasia as the Tethys closed in the Tertiary. This scenario is consistent with the occurrence of annonaceous seeds in the latest Cretaceous of Nigeria and the Eocene of England and with molecular dating of the family. Based on distribution of putatively primitive taxa in Madagascar and derived taxa in Asia, it has been suggested that Myristicaceae had a similar history. Phylogenetic analyses of Myristicaceae, using morphology and several plastid regions, confirm that the ancestral area was Africa-Madagascar and that Asian taxa are derived. However, Myristicaceae as a whole show strikingly lower molecular divergence than Annonaceae, indicating either a much younger age or a marked slowdown in molecular evolution. The fact that the oldest diagnostic fossils of Myristicaceae are Miocene seeds might be taken as evidence that Myristicaceae are much younger than Annonaceae, but this is implausible in requiring transoceanic dispersal of their large, animal-dispersed seeds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

While the crocodyliform. lineage extends back over 200 million years (Myr) to the Late Triassic, modern forms - members of Eusuchia - do not appear until the Cretaceous. Eusuchia includes the crown group Crocodylia, which comprises Crocodyloidea, Alligatoroidea and Gavialoidea. Fossils of non-crocodylian eusuchians are currently rare and, in most instances, fragmentary. Consequently, the transition from Neosuchia to Crocodylia has been one of the most poorly understood areas of crocodyliform evolution. Here we describe a new crocodyliform from the mid-Cretaceous (98-95 Myr ago; Albian-Cenomanian) Winton Formation of Queensland, Australia, as the most primitive member of Eusuchia. The anatomical changes associated with the emergence of this taxon indicate a pivotal shift in the feeding and locomotor behaviour of crocodyliforms - a shift that may be linked to the subsequent rapid diversification of Eusuchia 20 Myr later during the Late Cretaceous and Early Tertiary. While Laurasia (in particular North America) is the most likely ancestral area for Crocodylia, the biogeographic events associated with the origin of Eusuchia are more complex. Although the fossil evidence is limited, it now seems likely that at least part of the early history of Eusuchia transpired in Gondwana.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has been established that large numbers of certain trees can survive in the beds of rivers of northeastern Australia where a strongly seasonal distribution of precipitation causes extreme variations in flow on both a yearly and longer-term basis. In these rivers, minimal flow occurs throughout much of any year and for periods of up to several years, allowing the trees to become established and to adapt their form in order to facilitate their survival in environments that experience periodic inundation by fast-flowing, debris-laden water. Such trees (notably paperbark trees of the angiosperm genus Melaleuca) adopt a reclined to prostrate, downstream-trailing habit, have a multiple-stemmed form, modified crown with weeping foliage, development of thick, spongy bark, anchoring of roots into firm to lithified substrates beneath the channel floor, root regeneration, and develop in flow-parallel, linear groves. Individuals from within flow-parallel, linear groves are preserved in situ within the alluvial deposit of the river following burial and death. Four examples of in situ tree fossils within alluvial channel deposits in the Permian of eastern Australia demonstrate that specialised riverbed plant communities also existed at times in the geological past. These examples, from the Lower Permian Carmila Beds, Upper Permian Moranbah Coal Measures and Baralaba Coal Measures of central Queensland and the Upper Permian Newcastle Coal Measures of central New South Wales, show several of the characteristics of trees described from modern rivers in northeastern Australia, including preservation in closely-spaced groups. These properties, together with independent sedimentological evidence, suggest that the Permian trees were adapted to an environment affected by highly variable runoff, albeit in a more temperate climatic situation than the modem Australian examples. It is proposed that occurrences of fossil trees preserved in situ within alluvial channel deposits may be diagnostic of environments controlled by seasonal and longer-term variability in fluvial runoff, and hence may have value in interpreting aspects of palaeoclimate from ancient alluvial successions. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Cervarola Sandstones Formation (CSF), Aquitanian-Burdigalian in age, was deposited in an elongate, NW-stretched foredeep basin formed in front of the growing Northern Apennines orogenic wedge. The stratigraphic succession of the CSF, in the same way of other Apennine foredeep deposits, records the progressive closure of the basin due to the propagation of thrust fronts toward north-east, i.e. toward the outer and shallower foreland ramp. This process produce a complex foredeep characterized by synsedimentary structural highs and depocenters that can strongly influence the lateral and vertical turbidite facies distribution. Of consequence the main aim of this work is to describe and discuss this influence on the basis of a new high-resolution stratigraphic framework performed by measuring ten stratigraphic logs, for a total thickness of about 2000m, between the Secchia and Scoltenna Valleys (30km apart). In particular, the relationship between the turbidite sedimentation and the ongoing tectonic activity during the foredeep evolution has been describe through various stratigraphic cross sections oriented parallel and perpendicular to the main tectonic structures. On the basis of the high resolution physical stratigraphy of the studied succession, we propose a facies tract and an evolutionary model for the Cervarola Sandstones in the studied area. Thanks to these results and the analogies with others foredeep deposits of the northern Apennines, such as the Marnoso-arenacea Formation, the Cervarola basin has been interpreted as a highly confined foredeep controlled by an intense synsedimentary tectonic activity. The most important evidences supporting this hypothesis are: 1) the upward increase, in the studied stratigraphic succession (about 1000m thick), of sandstone/mudstone ratio, grain sizes and Ophiomorpha-type trace fossils testifying the high degree of flow deceleration related to the progressive closure and uplift of the foredeep. 2) the occurrence in the upper part of the stratigraphic succession of coarse-grained massive sandstones overlain by tractive structures such as megaripples and traction carpets passing downcurrent into fine-grained laminated contained-reflected beds. This facies tract is interpreted as related to deceleration and decoupling of bipartite flows with the deposition of the basal dense flows and bypass of the upper turbulent flows. 3) the widespread occurrence of contained reflected beds related to morphological obstacles created by tectonic structures parallel and perpendicular to the basin axis (see for example the Pievepelago line). 4) occurrence of intra-formational slumps, constituted by highly deformed portion of fine-grained succession, indicating a syn-sedimentary tectonic activity of the tectonic structures able to destabilize the margins of the basin. These types of deposits increase towards the upper part of the stratigraphic succession (see points 1 and 2) 5) the impressive lateral facies changes between intrabasinal topographic highs characterized by fine-grained and thin sandstone beds and marlstones and depocenters characterized by thick to very thick coarse-grained massive sandstones. 6) the common occurrence of amalgamation surfaces, flow impact structures and mud-draped scours related to sudden deceleration of the turbidite flows induced by the structurally-controlled confinement and morphological irregularities. In conclusion, the CSF has many analogies with the facies associations occurring in other tectonically-controlled foredeeps such as those of Marnoso-arenacea Formation (northern Italy) and Annot Sandstones (southern France) showing how thrust fronts and transversal structures moving towards the foreland, were able to produce a segmented foredeep that can strongly influence the turbidity current deposition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lithofacies distribution indicates that the Much Wenlock Limestone Formation of England and South Wales was desposited on a shelf which was flat and gently subsiding in the north, but topographically variable in the south. Limestone deposition in the north began with 12m of alga-rich limestone, which formed an upward shoaling sequence. Deepening then led to deposition of calcareous silty mudstones on the northern shelf. The remainder of the formation in this area formed during a shelf-wide regression, culminating in the production of an E to W younging sandbody. Lithofacies distribution on the southern shelf was primarily controlled by local subsidence. Six bedded lithofacies are recognised which contain 14 brachiopod/bryozoan dominated assemblages, of which 11 are in situ and three consist of reworked fossils. Microfacies analysis is necessary to distinguish assemblages which reflect original communities from those which reflect sedimentary processes. Turbulence, substrate-type, ease of feeding and other organisms in the environment controlled faunal distribution. Reefs were built dominantly by corals, stromatoporoids, algae and crinoids. Coral/stromatoporoid (Type A) reefs are common, particularly on the northern shelf, where they formed in response to shallowing, ultimately growing in front of the advancing carbonate sandbody. Algae dominate Type B and Type C reefs, reflecting growth in areas of poor water circulation. Lithification of the formation began in the marine-phreatic environment with precipitation of aragonite and high Mg calcite, which was subsequently altered to turbid low Mg calcite. Younger clear spars post-date secondary void formation. The pre-compactional clear spars have features which resemble the products of meteoric water diagenesis, but freshwater did not enter the formation at this time. The pre-compactional spars were precipitated by waters forced from the surrounding silty mudstones at shallow burial depths. Late diagenetic products are stylolites, compaction fractures and burial cements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background The infraorder Anomura has long captivated the attention of evolutionary biologists due to its impressive morphological diversity and ecological adaptations. To date, 2500 extant species have been described but phylogenetic relationships at high taxonomic levels remain unresolved. Here, we reconstruct the evolutionary history—phylogeny, divergence times, character evolution and diversification—of this speciose clade. For this purpose, we sequenced two mitochondrial (16S and 12S) and three nuclear (H3, 18S and 28S) markers for 19 of the 20 extant families, using traditional Sanger and next-generation 454 sequencing methods. Molecular data were combined with 156 morphological characters in order to estimate the largest anomuran phylogeny to date. The anomuran fossil record allowed us to incorporate 31 fossils for divergence time analyses. Results Our best phylogenetic hypothesis (morphological + molecular data) supports most anomuran superfamilies and families as monophyletic. However, three families and eleven genera are recovered as para- and polyphyletic. Divergence time analysis dates the origin of Anomura to the Late Permian ~259 (224–296) MYA with many of the present day families radiating during the Jurassic and Early Cretaceous. Ancestral state reconstruction suggests that carcinization occurred independently 3 times within the group. The invasion of freshwater and terrestrial environments both occurred between the Late Cretaceous and Tertiary. Diversification analyses found the speciation rate to be low across Anomura, and we identify 2 major changes in the tempo of diversification; the most significant at the base of a clade that includes the squat-lobster family Chirostylidae. Conclusions Our findings are compared against current classifications and previous hypotheses of anomuran relationships. Many families and genera appear to be poly- or paraphyletic suggesting a need for further taxonomic revisions at these levels. A divergence time analysis provides key insights into the origins of major lineages and events and the timing of morphological (body form) and ecological (habitat) transitions. Living anomuran biodiversity is the product of 2 major changes in the tempo of diversification; our initial insights suggest that the acquisition of a crab-like form did not act as a key innovation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent evidence suggests that the Subtropical Convergence (STC) zone east of New Zealand shifted little from its modern position along Chatham Rise during the last glaciation, and that offshore surface waters north of the STC zone cooled only slightly. However, at nearshore core site P69 (2195 m depth), 115 km off the east coast of North Island and ca 300 km north of the modern STC zone, planktonic foraminiferal species, transfer function data and stable oxygen and carbon isotope records suggest that surface waters were colder by up to 6°C during the late last glacial period compared to the Holocene, and included a strong upwelling signature. Presently site P69 is bathed by south-flowing subtropical waters in the East Cape Current. The nearshore western end of Chatham Rise supports a major bathymetric depression, the Mernoo Saddle, through which some exchange between northern subtropical and southern subantarctic water presently occurs. It is proposed that as a result of much intensified current flows south of the Rise during the last glaciation, a consequence of more compressed subantarctic water masses, lowered sea level, and an expanded and stronger Westerly Wind system, there was accelerated leakage northwards of both Australasian Subantarctic Water and upwelled Antarctic Intermediate Water over Mernoo Saddle in a modified and intensified Southland Current. The expanded cold water masses displaced the south-flowing warm East Cape Current off southeastern North Island, and offshore divergence was accompanied by wind-assisted upwelling of nutrient-rich waters in the vicinity of P69. A comparable kind of inshore cold water jetting possibly characterised most glacial periods since the latest Miocene, and may account for the occasional occurrence of subantarctic marine fossils in onland late Cenozoic deposits north of the STC zone, rather than invoking wholesale major oscillations of the oceanic STC itself.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reliable dating of glaciomarine sediments deposited on the Antarctic shelf since the Last Glacial Maximum (LGM) is very challenging because of the general absence of calcareous (micro-) fossils and the recycling of fossil organic matter. As a consequence, radiocarbon (14C) ages of the acid-insoluble organic fraction (AIO) of the sediments bear uncertainties that are very difficult to quantify. In this paper we present the results of three different chronostratigraphic methods to date a sedimentary unit consisting of diatomaceous ooze and diatomaceous mud that was deposited following the last deglaciation at five core sites on the inner shelf in the western Amundsen Sea (West Antarctica). In three cores conventional 14C dating of the AIO in bulk sediment samples yielded age reversals down-core, but at all sites the AIO 14C ages obtained from diatomaceous ooze within the diatom-rich unit yielded similar uncorrected 14C ages ranging from 13,517±56 to 11,543±47 years before present (yr BP). Correction of these ages by subtracting the core-top ages, which are assumed to reflect present-day deposition (as indicated by 21044 Pb dating of the sediment surface at one core site), yielded ages between ca. 10,500 and 8,400 calibrated years before present (cal yr BP). Correction of the AIO ages of the diatomaceous ooze by only subtracting the marine reservoir effect (MRE) of 1,300 years indicated deposition of the diatom-rich sediments between 14,100 and 11,900 cal yr BP. Most of these ages are consistent with age constraints between 13.0 and 8.0 ka BP for the diatom-rich unit, which we obtained by correlating the relative palaeomagnetic intensity (RPI) records of three of the sediment cores with global and regional reference curves for palaeomagnetic intensity. As a third dating technique we applied conventional 53 radiocarbon dating of the AIO included in acid-cleaned diatom hard parts that were extracted from the diatomaceous ooze. This method yielded uncorrected 14C ages of only 5,111±38 and 5,106±38 yr BP, respectively. We reject these young ages, because they are likely to be overprinted by the adsorption of modern atmospheric carbon dioxide onto the surfaces of the extracted diatom hard parts prior to sample graphitisation and combustion for 14C dating. The deposition of the diatom-rich unit in the western Amundsen Sea suggests deglaciation of the inner shelf before ca. 13 ka BP. The deposition of diatomaceous oozes on other parts of the Antarctic shelf around the same time, however, seems to be coincidental rather than directly related.