985 resultados para Fluvial morphometry
Resumo:
Una de les obres públiques més grans mai escomeses per l'home, i a la Xina possiblement només comparable a la Gran Muralla, és a punt d¿esdevenir una realitat: l'embassament de les Tres Gorges. Una enorme paret de formigó al més llarg i cabalós dels rius xinesos, el Iang-Tsé, acabarà amb una tràgica història de terribles inundacions i milers de morts, alhora que produirà una ingent quantitat d'electricitat (la central hidroelèctrica annexa a la presa serà la més gran de tot el món) i convertirà el riu en la principal via de comunicació fluvial del planeta. La construcció de embassament, però, suposarà també enormes i greus conseqüències.
Resumo:
Background: Several patterns of grey and white matter changes have been separately described in young adults with first-episode psychosis. Concomitant investigation of grey and white matter densities in patients with first-episode psychosis without other psychiatric comorbidities that include all relevant imaging markers could provide clues to the neurodevelopmental hypothesis in schizophrenia. Methods: We recruited patients with first-episode psychosis diagnosed according to the DSM-IV-TR and matched controls. All participants underwent magnetic resonance imaging (MRI). Voxel-based morphometry (VBM) analysis and mean diffusivity voxel-based analysis (VBA) were used for grey matter data. Fractional anisotropy and axial, radial and mean diffusivity were analyzed using tract-based spatial statistics (TBSS) for white matter data. Results: We included 15 patients and 16 controls. The mean diffusivity VBA showed significantly greater mean diffusivity in the first-episode psychosis than in the control group in the lingual gyrus bilaterally, the occipital fusiform gyrus bilaterally, the right lateral occipital gyrus and the right inferior temporal gyrus. Moreover, the TBSS analysis revealed a lower fractional anisotropy in the first-episode psychosis than in the control group in the genu of the corpus callosum, minor forceps, corticospinal tract, right superior longitudinal fasciculus, left middle cerebellar peduncle, left inferior longitudinal fasciculus and the posterior part of the fronto-occipital fasciculus. This analysis also revealed greater radial diffusivity in the first-episode psychosis than in the control group in the right corticospinal tract, right superior longitudinal fasciculus and left middle cerebellar peduncle. Limitations: The modest sample size and the absence of women in our series could limit the impact of our results. Conclusion: Our results highlight the structural vulnerability of grey matter in posterior areas of the brain among young adult male patients with first-episode psychosis. Moreover, the concomitant greater radial diffusivity within several regions already revealed by the fractional anisotropy analysis supports the idea of a late myelination in patients with first-episode psychosis.
Resumo:
An important evaporitic sedimentation occurred during the Paleogene (Eocene to lower Oligocene) in the Barberà sector of the southeastern margin of the Tertiary Ebro Basin. This sedimentation took place in shallow lacustrine environments and was controlled by a number of factors: 1) the tectonic structuration of the margin; 2) the high calcium sulphate content in the meteoric waters coming from the marginal reliefs; 3) the semiarid climate; and 4) the development of large alluvial fans along the basin margin, which also conditioned the location of the saline lakes. The evaporites are currently composed of secondary gypsum in surface and anhydrite at depth. There are, however, vestiges of the local presence of sodium sulphates. The evaporite units, with individual thicknesses ranging between 50 and 100 m, are intercalated within various lithostratigraphic formations and exhibit a paleogeographical pattern. The units located closer to the basin margin are characterized by a massive gypsum lithofacies (originally, bioturbated gypsum) bearing chert, and also by meganodular gypsum locally (originally, meganodules of anhydrite) in association with red lutites and clastic intercalations (gypsarenites, sandstones and conglomerates). Chert, which is only linked to the thickest gypsum layers, seems to be an early diagenetic, lacustrine product. Cyclicity in these proximal units indicates the progressive development of lowsalinity, lacustrine bodies on red mud flats. At the top of some cycles, exposure episodes commonly resulted in dissolution, erosion, and the formation of edaphic features. In contrast, the units located in a more distal position with regard to the basin margin are formed by an alternation of banded-nodular gypsum and laminated gypsum layers in association with grey lutites and few clastic intercalations. These distal units formed in saline lakes with a higher ionic concentration. Exposure episodes in these lakes resulted in the formation of synsedimentary anhydrite and sabkha cycles. In some of these units, however, outer rims characterized by a lithofacies association similar to that of the proximal units occur (nodular gypsum, massive gypsum and chert nodules).
Resumo:
Depth-averaged velocities and unit discharges within a 30 km reach of one of the world's largest rivers, the Rio Parana, Argentina, were simulated using three hydrodynamic models with different process representations: a reduced complexity (RC) model that neglects most of the physics governing fluid flow, a two-dimensional model based on the shallow water equations, and a three-dimensional model based on the Reynolds-averaged Navier-Stokes equations. Row characteristics simulated using all three models were compared with data obtained by acoustic Doppler current profiler surveys at four cross sections within the study reach. This analysis demonstrates that, surprisingly, the performance of the RC model is generally equal to, and in some instances better than, that of the physics based models in terms of the statistical agreement between simulated and measured flow properties. In addition, in contrast to previous applications of RC models, the present study demonstrates that the RC model can successfully predict measured flow velocities. The strong performance of the RC model reflects, in part, the simplicity of the depth-averaged mean flow patterns within the study reach and the dominant role of channel-scale topographic features in controlling the flow dynamics. Moreover, the very low water surface slopes that typify large sand-bed rivers enable flow depths to be estimated reliably in the RC model using a simple fixed-lid planar water surface approximation. This approach overcomes a major problem encountered in the application of RC models in environments characterised by shallow flows and steep bed gradients. The RC model is four orders of magnitude faster than the physics based models when performing steady-state hydrodynamic calculations. However, the iterative nature of the RC model calculations implies a reduction in computational efficiency relative to some other RC models. A further implication of this is that, if used to simulate channel morphodynamics, the present RC model may offer only a marginal advantage in terms of computational efficiency over approaches based on the shallow water equations. These observations illustrate the trade off between model realism and efficiency that is a key consideration in RC modelling. Moreover, this outcome highlights a need to rethink the use of RC morphodynamic models in fluvial geomorphology and to move away from existing grid-based approaches, such as the popular cellular automata (CA) models, that remain essentially reductionist in nature. In the case of the world's largest sand-bed rivers, this might be achieved by implementing the RC model outlined here as one element within a hierarchical modelling framework that would enable computationally efficient simulation of the morphodynamics of large rivers over millennial time scales. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The common shrew Sorex araneus Linnaeus, 1758 is subject to intense chromosomal polymorphism. About 65 chromosome races are presently known. One of these chromosome races (the Valais race) is karyologically, morphologically, biochemically, and genetically clearly distinct from all other chromosome races of the species. Recent studies of hybrid zones between the Valais race and other chromosome races in the Swiss and French Alps add further strong evidence for the specific taxonomic status of the Valais race. Chromosomes and diagnostic protein markers reveal sharp frequency clines and strong heterozygote deficits. In one hybrid zone, the maintenance of the strong genetic differentiation of the hybridizing taxa was confirmed by a study with autosomal microsatellites indicating minimal gene flow. A microsatellite marker on the Y-chromosome showed complete absence of male mediated gene flow suggesting hybrid male sterility. To clarify the taxonomic status of this taxon, additional analyses were conducted. A morphometric analysis of the mandible indicated the Valais race is morphologically as distinct from neighbouring chromosome races of S. araneus as from other related Sorex species. In a phylogeny based on complete mitochondrial DNA cytochrome b gene sequences, the Valais race clearly appears as the sister taxon to all other races of S. araneus. Therefore, the chromosome race Valais of S. araneus herein is elevated to specific status and the name Sorex antinorii Bonaparte, 1840 is applied.
Resumo:
Report of one of the workshops developed in 2005 under the process of public participation: Mapping La Mina (2002-2006). http://www.ub.edu/escult/mina
Resumo:
Our understanding of how genotype determines phenotype in primary dystonia is limited. Familial young-onset primary dystonia is commonly due to the DYT1 gene mutation. A critical question, given the 30% penetrance of clinical symptoms in DYT1 mutation carriers, is why the same genotype leads to differential clinical expression and whether non-DYT1 adult-onset primary dystonia, with and without family history share pathophysiological mechanisms with DYT1 dystonia. This study examines the relationship between dystonic phenotype and the DYT1 gene mutation by monitoring whole-brain structure using voxel-based morphometry. We acquired magnetic resonance imaging data of symptomatic and asymptomatic DYT1 mutation carriers, of non-DYT1 primary dystonia patients, with and without family history and control subjects with normal DYT1 alleles. By crossing the factors genotype and phenotype we demonstrate a significant interaction in terms of brain anatomy confined to the basal ganglia bilaterally. The explanation for this effect differs according to both gene and dystonia status: non-DYT1 adult-onset dystonia patients and asymptomatic DYT1 carriers have significantly larger basal ganglia compared to healthy subjects and symptomatic DYT1 mutation carriers. There is a significant negative correlation between severity of dystonia and basal ganglia size in DYT1 mutation carriers. We propose that differential pathophysiological and compensatory mechanisms lead to brain structure changes in non-DYT1 primary adult-onset dystonias and DYT1 gene carriers. Given the range of age of onset, there may be differential genetic modulation of brain development that in turn determines clinical expression. Alternatively, a DYT1 gene dependent primary defect of motor circuit development may lead to stress-induced remodelling of the basal ganglia and hence dystonia.
Resumo:
Surface-based ground penetrating radar (GPR) and electrical resistance tomography (ERT) are common tools for aquifer characterization, because both methods provide data that are sensitive to hydrogeologically relevant quantities. To retrieve bulk subsurface properties at high resolution, we suggest incorporating structural information derived from GPR reflection data when inverting surface ERT data. This reduces resolution limitations, which might hinder quantitative interpretations. Surface-based GPR reflection and ERT data have been recorded on an exposed gravel bar within a restored section of a previously channelized river in northeastern Switzerland to characterize an underlying gravel aquifer. The GPR reflection data acquired over an area of 240×40 m map the aquifer's thickness and two internal sub-horizontal regions with different depositional patterns. The interface between these two regions and the boundary of the aquifer with then underlying clay are incorporated in an unstructured ERT mesh. Subsequent inversions are performed without applying smoothness constraints across these boundaries. Inversion models obtained by using these structural constraints contain subtle resistivity variations within the aquifer that are hardly visible in standard inversion models as a result of strong vertical smearing in the latter. In the upper aquifer region, with high GPR coherency and horizontal layering, the resistivity is moderately high (N300 Ωm). We suggest that this region consists of sediments that were rearranged during more than a century of channelized flow. In the lower low coherency region, the GPR image reveals fluvial features (e.g., foresets) and generally more heterogeneous deposits. In this region, the resistivity is lower (~200 Ωm), which we attribute to increased amounts of fines in some of the well-sorted fluvial deposits. We also find elongated conductive anomalies that correspond to the location of river embankments that were removed in 2002.
Resumo:
Pancreatic acinar cells of euthermic, hibernating and arousing individuals of the hazel dormouse Muscardinus avellanarius (Gliridae) have been observed at the electron-microscopic level and analysed by means of ultrastructural morphometry and immunocytochemistry in order to investigate possible fine structural changes of cellular components during periods of strikingly different degrees of metabolic activity. During hibernation, the cisternae of the rough endoplasmic reticulum (RER) flatten assuming a parallel pattern, the Golgi apparatus is extremely reduced and the mitochondria contain many electron-dense particles. The cell nuclei appear irregularly shaped, with deep indentations containing small zymogen granules. They also contain abundant coiled bodies and unusual constituents, such as amorphous bodies and dense granular bodies. Large numbers of zymogen granules occur in all animals. However, the acinar lumina are open and filled with zymogen only in euthermic animals, whereas, in hibernating and arousing individuals, they appear to be closed. Morphometrical analyses indicate that, in pancreatic acinar cells, nuclei and zymogen granules significantly decrease in size from euthermia to hibernation, probably reflecting a drastic decrease of metabolic activities, mainly protein synthesis and processing. In all the studied animals, immunocytochemistry with specific antibodies has revealed an increasing gradient in alpha-amylase content along the RER-Golgi-zymogen granule pathway, reflecting the protein concentration along the secretory pathway. Moreover, during deep hibernation, significantly larger amounts of alpha-amylase accumulate in RER and zymogen granules in comparison to the other seasonal phases analysed. Upon arousal, all cytoplasmic and nuclear constituents restore their euthermic aspect and all morphometrical and immunocytochemical parameters exhibit the euthermic values, thereby indicating a rapid resumption of metabolic activities.
Resumo:
Recent genetic studies have implicated a number of candidate genes in the pathogenesis of Autism Spectrum Disorder (ASD). Polymorphisms of CNTNAP2 (contactin-associated like protein-2), a member of the neurexin family, have already been implicated as a susceptibility gene for autism by at least 3 separate studies. We investigated variation in white and grey matter morphology using structural MRI and diffusion tensor imaging. We compared volumetric differences in white and grey matter and fractional anisotropy values in control subjects characterised by genotype at rs7794745, a single nucleotide polymorphism in CNTNAP2. Homozygotes for the risk allele showed significant reductions in grey and white matter volume and fractional anisotropy in several regions that have already been implicated in ASD, including the cerebellum, fusiform gyrus, occipital and frontal cortices. Male homozygotes for the risk alleles showed greater reductions in grey matter in the right frontal pole and in FA in the right rostral fronto-occipital fasciculus compared to their female counterparts who showed greater reductions in FA of the anterior thalamic radiation. Thus a risk allele for autism results in significant cerebral morphological variation, despite the absence of overt symptoms or behavioural abnormalities. The results are consistent with accumulating evidence of CNTNAP2's function in neuronal development. The finding suggests the possibility that the heterogeneous manifestations of ASD can be aetiologically characterised into distinct subtypes through genetic-morphological analysis.
Resumo:
Fish passage at artificial barriers is necessary for the conservation of healthy fish stocks. The first barrier that migratory fish encounter when ascending the Ebro River is the Xerta Weir, where a pool-type fishway was constructed in 2008. From 2007 to 2010, boat electrofishing surveys were conducted in the Ebro River downstream of the Xerta Weir to assess the potential pool of species that could use the fishway. Nine native and 12 exotic species were captured, the latter comprising 62 % of the relative abundance and 70 % of the biomass. A combination of video recording, electrofishing and trapping was used to assess the effectiveness of the fishway in facilitating the passage of fish. Eight species were detected using the fishway, of which five were native (Liza ramada, Anguilla anguilla, Barbus graellsii, Gobio lozanoi and Salaria fluviatilis) and three exotic (Alburnus alburnus, Cyprinus carpio and Rutilus rutilus). Only L. ramada used the fishway in substantial numbers. The rate of fish passage was the highest from June to August and decreased afterwards. The effectiveness of the fishway might be lowered by areas of turbulence within the fishway and by distraction flows from a nearby hydropower station
Resumo:
En el marc dels cabals ambientals o “ecològics”, el coneixement de la regulació del règim de cabals mínims o baixos per part de les infraestructures hidràuliques pren especial importància. En aquest treball, es contrasta la hipòtesi de que la regulació del règim fluvial per part dels embassaments de regadiu i per part dels embassaments destinats a la producció d’energia hidroelèctrica produeix una alteració diferent en el règim de cabals mínims. Per fer-ho, es realitza l’anàlisi comparatiu del grau d’assoliment històric dels cabals mínims ecològics, determinats en el nou Pla de Conca de l’Ebre 2010-15, en 30 trams fluvials representatius de l’efecte d’aquests tipus d’embassaments. Els resultats obtinguts indiquen que la tipologia d’ús dels embassaments és determinant en la regulació dels cabals mínims. Els embassaments de reg produeixen una major alteració del règim de cabals mínims i presenten una diferent distribució i una major variabilitat intraanual en aquesta alteració que els embassaments hidroelèctrics.
Resumo:
The overarching goal of the proposed research was to provide a predictive tool for knickpoint propagation within the HCA (Hungry Canyon Alliance) territory. Knickpoints threaten the stability of bridge structures in Western Iowa. The study involved detailed field investigations over two years in order to monitor the upstream migration of a knickpoint on Mud Creek in Mills County, IA and identify the key mechanisms triggering knickpoint propagation. A state-of-the-art laser level system mounted on a movable truss provided continuous measurements of the knickpoint front for different flow conditions. A pressure transducer found in proximity of the truss provided simultaneous measurements of the flow depth. The laser and pressure transducer measurements led to the identification of the conditions at which the knickpoint migration commences. It was suggested that negative pressures developed by the reverse roller flow near the toe of the knickpoint face triggered undercutting of the knickpoint at this location. The pressure differential between the negative pressure and the atmospheric pressure also draws the impinging jet closer to the knickpoint face producing scour. In addition, the pressure differential may induce suction of sediment from the face. Other contributing factors include slump failure, seepage effects, and local fluvial erosion due to the exerted fluid shear. The prevailing flow conditions and soil information along with the channel cross-sectional geometry and gradient were used as inputs to a transcritical, one dimensional, hydraulic/geomorphic numerical model, which was used to map the flow characteristics and shear stress conditions near the knickpoint. Such detailed flow calculations do not exist in the published literature. The coupling of field and modeling work resulted in the development of a blueprint methodology, which can be adopted in different parts of the country for evaluating knickpoint evolution. This information will assist local government agencies in better understanding the principal factors that cause knickpoint propagation and help estimate the needed response time to control the propagation of a knickpoint after one has been identified.