952 resultados para FUNCTIONAL THEORY CALCULATIONS
Resumo:
In the frame of time-dependent density functional theory, the: dynamical polarizabilities of Na-5, Na-6 and Na-7 clusters are calculated using a time-dependent local density approximation. By using Fourier transformation, the optical absorption spectra of Na-5, Na-6 and Na-7 clusters are obtained from their dynamical polarizabilities. It is shown that experimentally measured optical absorption spectra of Na-5, Na-6 and Na-7 clusters are reproduced in our calculations. Furthermore, the calculations of Na-6 and Na-7 clusters are in good agreement with the results of configuration interaction method. Compared with the three-dimensional structure of Na-6, the calculated optical absorption spectra of Na-6 with the two-dimensional structure are more close to the experimental data.
Resumo:
The process of multielectron transfer from a Na-4 cluster induced by highly charged C6+, C4+, C2+ and C+ ions is studied using the method of time-dependent density functional theory within the local density approximation combined with the use of pseudopotential. The evolution of dipole moment changes and emitted electrons in Na-4 isobtained and the time-dependent probabilities with various charges are deduced. It is shown that the Na-4 cluster is strongly ionized by C6+ and that the number of emitted electrons per atom of Na-4 is larger than that of Na-2 under the same condition. One can find that the detailed information of the emitted electrons from Na-4 is different from the same from Na-2, which is possibly related to the difference in structure between the two clusters.
Resumo:
The electronic structures and spectral properties of three Re(I) complexes [Re(CO)(3)XL] (X = Br, Cl; L = 1-(4-5 '-phenyl-1.3,4-oxadiazolylbenzyl)-2-pyridinylbenzoimidazole (1), 1-(4-carbazolylbutyl)-2-pyridinylbenzoimidazole (2), and 2-(1-ethyl benzimidazol-2-yl)pyridi ne (3)) were investigated theoretically. The ground and the lowest lying triplet excited states were full optimized at the B3LYP/LANL2DZ and CIS/LANL2DZ levels, respectively. TDDFT/PCM calculations have been employed to predict the absorption and emission spectra starting from the ground and excited state geometries, respectively.
Resumo:
The electronic and mechanical properties of 5d transition metal mononitrides from LaN to AuN are systematically investigated by use of the density-functional theory. For each nitride, Six Structures are considered, i.e., rocksalt, zinc blende, CsCl, wurtzite, NiAs and WC structures. Among the considered structures, rocksalt structure is the most stable for LaN, HfN and ALIN, WC structure for TaN, NiAs structure for WN, wurtzite structure for ReN, OsN, IrN and PtN. The most stable Structure for each nitride is mechanically stable. The formation enthalpy increases from LaN to AuN.
Resumo:
The elastic and electronic properties of hypothetical CoN3 and RhN3 with cubic skutterudite structure were studied by first principles calculations based on density functional theory. By choosing different initial geometries, two local minima or modifications were located on the potential energy surface, termed as modifications I and II. Both compounds are mechanically stable. For each compound, modification I is lower in energy than II. Thermodynamically stable phases can be achieved by applying pressures. Modification II is lower in energy than I at above 50 GPa for both compounds.
Resumo:
The quantum yield, lifetime, and absorption spectrum of four [Ru(bpy)(2)L](+) [where bpy is 2,2'-bipyridyl; L is represented by the deprotonated form of 2-(1H-tetrazol-5-yl)pyridine (L1) or 2-(1H-tetrazol-5-yl)pyrazine (L2)], as well as their methylated complexes [Ru(bpy)(2)LMe](2+) (RuL1Me and RuL2Me) are closely ligand dependent. In this paper, density functional theory (DFT) and time-dependent DFT (TDDFT) were performed to compare the above properties among these complexes. The calculated results reveal that the replacement of pyridine by pyrazine or the attachment of a CH3 group to the tetrazolate ring greatly increases the pi-accepting ability of the ancillary ligands.
Resumo:
Quantum-chemistry methods were explored to investigate the electronic structures, injection and transport properties, absorption and phosphorescence mechanism of a series of blue-emitting Ir(III) complexes {[(F-2-ppy)(2)Ir(pta -X/pyN4)], where F-2-ppy = (2,4-difluoro)phenylpyridine; pta = pyridine-1,2,4-triazole; X = phenyl(1); p-tolyl (2); 2,6-difluororophenyl (3); -CF3 (4), and pyN4 = pyridine-1,2,4-tetrazolate (5)}, which are used as emitters in organic light-emitting diodes (OLEDs). The mobility of hole and electron were studied computationally based on the Marcus theory. Calculations of Ionization potentials (IPs) and electron affinities (EAs) were used to evaluate the injection abilities of holes and electrons into these complexes.
Resumo:
Five new compounds of sulfonylcalix[4]arenetetrasulfonate (SC4AS), [H7Na(H2O)(3)(SC4AS)(phen)(5)](H2O)(11.9) (1), [H6Mn(H2O)(4)(SC4AS)(phen)(5)] (H2O)(12.7) (2), [Cu-4(SC4AS) (phen)(6)] (H2O)(4.5) (3), {[Cu (2)(SC4AS) (bpy)(2)][Cu(bpy)(2)(H2O)](2)} (H2O)(6.6) (4), and {[Zn-2(SC4AS) (phen)(2)][Zn(phen)(2)(H2O)(2)](2)} (H2O)(7) (5) (where phen 1,10-phenanthroline and bpy = 2,2'-bipyridine), were synthesized by a hydrothermal method and structurally determined by single crystal X-ray diffraction. The SC4AS ligand adopts partial cone conformation in compounds 1 and 2 and 1,2-alternate form in compounds 3-5. According to the structural analysis and density functional theory (DFT) calculations, we suggest that the metal can affect the conformation of SC4AS.
Resumo:
The structural, electronic, and mechanical properties of TaN were investigated by use of the density functional theory (DFT). Eight structures were considered, i.e.. hexagonal WC TaN, NiAs, wurtzite, and CoSn structures. cubic NaCl. zinc-blende and CsCl structures. The results indicate that TaN in TaN-type structure is the most stable at ambient conditions among the considered structures. Above 5 GPa, TaN in WC-type structure becomes energetically the most stable phase. They are also stable both thermodynamically and mechanically. TaN in WC-type has the largest shear Modulus 243 GPa and large bulk modulus 337 GPa among the considered structures. The Volume compressibility is slightly larger than diamond, but smaller than c-BN at pressures from 0 to 100 GPa. The compressibility along the c axis is smaller than the linear compressibility of both diamond and c-BN.
Resumo:
The half metallic properties of the recent synthesized Sr2CuOsO6 were predicted by using the density functional theory. The effects of electron correlation and spin-orbit coupling (SOC) were studied. The calculations show that without considering SOC effect, Sr2CuOsO6 is half metallic and ferrimagnetic. By including both electron correlation and spin-orbit coupling, the total spin magnetic moment is 0.89 mu(B), total orbital moment 0.43 mu(B) in opposite direction, making the net magnetic moment 0.46 mu(B). SOC ruins the half metallic character. Crown Copyright (C) 2009 Published by Elsevier B. V. All rights reserved.
Resumo:
By fusing an electron-deficient ring system with the phenyl ring of a 2-phenylpyridine (ppy)-type ligand, a new and synthetically versatile strategy for the phosphorescence color tuning of cyclometalated iridium(III) and platinum(II) metallophosphors has been established. Two robust red electrophosphors with enhanced electron-injection/electron-transporting features were prepared by using an electron-trapping fluoren-9-one chromophore in the ligand design. The thermal, photophysical, redox and electrophosphorescent properties of these complexes are reported. These exciting results can be attributed to a switch of the metal-to-ligand charge-transfer (MLCT) character of the transition from the pyridyl groups in the traditional Ir-III or Pt-II ppy-type complexes to the electron-deficient ring core, and the spectral assignments corroborate well with the electrochemical data as well as the timedependent density functional theory (TD-DFT) calculations. The electron-withdrawing character of the fused ring results in much more stable MLCT states, inducing a substantial red-shift of the triplet emission energy from yellow to red for the Ir-III complex and even green to red for the PtII counterpart.
Resumo:
We report a heteroleptic ruthenium complex (007) featuring the electron-rich 5-octyl-2,2'-bis(3,4-ethylenedioxythiophene) moiety conjugated with 2,2-bipyridine and exhibiting 10.7% power conversion efficiency measured at the AM1.5G conditions, thanks to the enhanced light-harvesting that is closely related to photocurrent. This C107 sensitizer has an extremely high molar extinction coefficient,of 27.4 x 10(3) M-1 cm(-1) at 559 nm in comparison to its analogue C103 (20.5 x 10(3) M-1 cm(-1) at 550 nm) or Z907 (12.2 x 10(3) M(-1)cm(-1) at 521 nm) with the corresponding 5-hexyl-3,4-ethylenedioxythiopliene- or nonyl-substituted bipyridyl unit. The augmentation of molar extinction coefficients and the bathochromic shift of low-energy absorption peaks along with the pi-conjugation extension are detailed by TD-DFT calculations. The absorptivity of mesoporous titania films grafted with Z907, C103, or C107 sublinearly increases with the molar extinction coefficient of sensitizers, which is consistent with the finding derived from the surface coverage measurements that the packing density of those sensitizers decreases with the geometric enlargement of ancillary ligands.
Resumo:
Zinc(II)-2-(2-hydroxyphenyl)benzothiazolate complex is an excellent white-light-emitting material. Despite some studies devoted to this complex, no information on the real origin of the unusually broad electroluminescent (EL) emission is available. Therefore, we investigate photoluminescent and EL properties of the zinc complex. Orange phosphorescent emission at 580 nm was observed for the complex in thin film at 77 K, whereas only fluorescent emission was obtained at room temperature. Molecular orbitals, excitation energy, and emission energy of the complex were investigated using quantum chemical calculations. We fabricated the device with a structure of ITO/F16CuPc(5.5 nm)/Zn-complex/Al, where F16CuPc is hexadecafluoro copper phthalocyanine. The EL spectra varied strongly with the thickness of the emissive layer. We observed a significant change in the emission spectra with the viewing angles. Optical interference effects and light emission originating both from fluorescence and from phosphorescence can explain all of the observed phenomena, resulting in the broad light emission for the devices based on the Zn complex. We calculated the charge transfer integral and the reorganization energy to explain why the Zn complex is a better electron transporter than a hole transporter.
Resumo:
Four novel Ir-III and Pt-II complexes with cyclometalated ligands bearing a carbazole framework are prepared and characterized by elemental analysis, NMR spectroscopy, and mass spectrometry. Single-crystal X-ray diffraction studies of complexes 1, 3, and 4 reveal that the 3- or 2-position C atom of the carbazole unit coordinates to the metal center. The difference in the ligation position results in significant shifts in the emission spectra with the changes in wavelength being 84 nm for the Ir complexes and 63 nm for the Pt complexes. The electrochemical behavior and photophysical properties of the complexes are investigated, and correlate well with the results of density functional theory (DFT) calculations. Electroluminescent devices with a configuration of ITO/NPB/CBP:dopant/BCP/AlQ(3)/LiF/Al can attain very high efficiencies.
Resumo:
First-principles calculations using the augmented plane wave plus local orbital method, as implemented in the WIEN2K code, have been used to investigate the structural, electronic, and magnetic properties of the layered perovskite Cs2AgF4. Our calculations indicate that an orthorhombic ground state for Cs2AgF4 is energetically favored over tetragonal. We also find that Cs2AgF4 should be a strong two-dimensional ferromagnet, with very weak antiferromagnetic coupling between the layers, in agreement with the experiment. More importantly, an antiferrodistortive ordering of z(2)-x(2) and z(2)-y(2) orbitals is inferred from the density of states and from a spin density isosurface analysis.