998 resultados para FOREST SOILS
Resumo:
Twenty seven species of calyptrate muscoids were reared from a forested area of Rio de Janeiro (Tijuca Forest). Substrates for obtaining flies were beef liver, fish, mouse, frog, shrimp, snail carcasses, human faeces, banana and papaya fruits. The most frequent species found were: Fannia sp. (subgroup pusio) (49.9% on shrimp). Hemilucilia flavifacies (95.0% on liver). Phaenicia eximia (49.4% on mouse), Synthesiomyia nudiseta ( 100.0% on fish), Ophyra aenescens (100.0% on shrimp), Oxyvinia excisa (100.0% on faeces), Euboettecheria collusor (52.4% on faeces) and Pattonella intermutans (61.0% on frog).
Resumo:
The sensitivity of altitudinal and latitudinal tree-line ecotones to climate change, particularly that of temperature, has received much attention. To improve our understanding of the factors affecting tree-line position, we used the spatially explicit dynamic forest model TreeMig. Although well-suited because of its landscape dynamics functions, TreeMig features a parabolic temperature growth response curve, which has recently been questioned. and the species parameters are not specifically calibrated for cold temperatures. Our main goals were to improve the theoretical basis of the temperature growth response curve in the model and develop a method for deriving that curve's parameters from tree-ring data. We replaced the parabola with an asymptotic curve, calibrated for the main species at the subalpine (Swiss Alps: Pinus cembra, Larix decidua, Picea abies) and boreal (Fennoscandia: Pinus sylvestris, Betula pubescens, P. abies) tree-lines. After fitting new parameters, the growth curve matched observed tree-ring widths better. For the subalpine species, the minimum degree-day sum allowing, growth (kDDMin) was lowered by around 100 degree-days; in the case of Larix, the maximum potential ring-width was increased to 5.19 mm. At the boreal tree-line, the kDDMin for P. sylvestris was lowered by 210 degree-days and its maximum ring-width increased to 2.943 mm; for Betula (new in the model) kDDMin was set to 325 degree-days and the maximum ring-width to 2.51 mm; the values from the only boreal sample site for Picea were similar to the subalpine ones, so the same parameters were used. However, adjusting the growth response alone did not improve the model's output concerning species' distributions and their relative importance at tree-line. Minimum winter temperature (MinWiT, mean of the coldest winter month), which controls seedling establishment in TreeMig, proved more important for determining distribution. Picea, P. sylvestris and Betula did not previously have minimum winter temperature limits, so these values were set to the 95th percentile of each species' coldest MinWiT site (respectively -7, -11, -13). In a case study for the Alps, the original and newly calibrated versions of TreeMig were compared with biomass data from the National Forest Inventor), (NFI). Both models gave similar, reasonably realistic results. In conclusion, this method of deriving temperature responses from tree-rings works well. However, regeneration and its underlying factors seem more important for controlling species' distributions than previously thought. More research on regeneration ecology, especially at the upper limit of forests. is needed to improve predictions of tree-line responses to climate change further.
Resumo:
An African oxalogenic tree, the iroko tree (Milicia excelsa), has the property to enhance carbonate precipitation in tropical oxisols, where such accumulations are not expected due to the acidic conditions in these types of soils. This uncommon process is linked to the oxalate-carbonate pathway, which increases soil pH through oxalate oxidation. In order to investigate the oxalate-carbonate pathway in the iroko system, fluxes of matter have been identified, described, and evaluated from field to microscopic scales. In the first centimeters of the soil profile, decaying of the organic matter allows the release of whewellite crystals, mainly due to the action of termites and saprophytic fungi. In addition, a concomitant flux of carbonate formed in wood tissues contributes to the carbonate flux and is identified as a direct consequence of wood feeding by termites. Nevertheless, calcite biomineralization of the tree is not a consequence of in situ oxalate consumption, but rather related to the oxalate oxidation inside the upper part of the soil. The consequence of this oxidation is the presence of carbonate ions in the soil solution pumped through the roots, leading to preferential mineralization of the roots and the trunk base. An ideal scenario for the iroko biomineralization and soil carbonate accumulation starts with oxalatization: as the iroko tree grows, the organic matter flux to the soil constitutes the litter, and an oxalate pool is formed on the forest ground. Then, wood rotting agents (mainly termites, saprophytic fungi, and bacteria) release significant amounts of oxalate crystals from decaying plant tissues. In addition, some of these agents are themselves producers of oxalate (e.g. fungi). Both processes contribute to a soil pool of "available" oxalate crystals. Oxalate consumption by oxalotrophic bacteria can then start. Carbonate and calcium ions present in the soil solution represent the end products of the oxalate-carbonate pathway. The solution is pumped through the roots, leading to carbonate precipitation. The main pools of carbon are clearly identified as the organic matter (the tree and its organic products), the oxalate crystals, and the various carbonate features. A functional model based on field observations and diagenetic investigations with δ13C signatures of the various compartments involved in the local carbon cycle is proposed. It suggests that the iroko ecosystem can act as a long-term carbon sink, as long as the calcium source is related to non-carbonate rocks. Consequently, this carbon sink, driven by the oxalate carbonate pathway around an iroko tree, constitutes a true carbon trapping ecosystem as defined by ecological theory.
Resumo:
Data on frequency and seasonal distribution of culicinae were recorded in the forest near a recently constructed hydroelectric plant - Samuel, in the State of Rondônia, Brazilian Amazon. Collections were performed almost daily from August 1990 to July 1991, between 6 and 9 p.m., using human bait. A total of 3,769 mosquitoes was collected, representing 21 species, including seven new records for the State of Rondônia. The most frequently collected species were Aedes fulvus (25%) and Ae. pennai (12.3%). The highest density for the majority of mosquito species coincided with the rainy season.
Resumo:
An anopheline survey was carried out in two simian malaria areas in the Brazilian Amazon, Balbina and Samuel, to determine the potential vectors of Plasmodium brasilianum. The most abundant and/or acrodendrophilic anophelines in the forest and the most likely vector were Anopheles mediopunctatus, An. nuneztovari, An. oswaldoi, An. triannulatus and An. shannoni. An. darlingi and An. marajoara were captured essentially in anthropic habitats outside the forest and are unlikely to be involved in the transmission of P. brasilianum among monkeys within the forests and from monkeys to man in their surroundings in the Amazon.
Resumo:
Sandflies were collected in the base of tree-trunks in the seasons of high and least rainfall in the Ducke Forest Reserve, near Manaus in the State of Amazonas. Lutzomyia umbratilis was the most abundant sandfly species. Caryocar villosum, Chrysophyllum amazonicum, Dinizia excelsa, Eschweilera atropetiolata and Parkia multijuga were the tree species on which most sandflies were collected and relative abundance were related to trunk characteristics. Seasonal patterns of sandfly distribution in the forest were observed.
Resumo:
Phylogenetic analysis of all 31 described mitochondrial (cytochrome b) haplotypes of Lutzomyia whitmani demonstrated that new material from the State of Rondônia, in southwest Amazônia, forms a clade within a lineage found only in the rain-forest regions of Brazil. This rain-forest lineage also contains two other clades of haplotypes, one from eastern Amazônia and one from the Atlantic forest zone of northeast Brazil (including the type locality of the species in Ilhéus, State of Bahia). These findings do not favour recognizing two allopatric cryptic species of L. whitmani, one associated with the silvatic transmission of Leishmania shawi in southeast Amazônia and the other with the peridomestic transmission of Le. braziliensis in northeast Brazil. Instead, they suggest that there is (or has been in the recent past) a continuum of inter-breeding populations of L. whitmani in the rain-forest regions of Brazil.
Resumo:
Forty-four marsupials, 77 rodents and 161 ticks were captured in an Atlantic Forest Reserve in Cotia county, State of São Paulo, where human cases of Lyme disease (LD) simile were reported. Twenty-one borrelia-like spirochete isolates were recovered from the mammals' blood and rodent livers or spleens, and triturated ticks inoculated into BSK II medium. Our results suggest that the reservoirs and ticks collected may harbor borrelia-like spirochetes, some of which have an antigenic similarity with the unknown causative agent of LD simile in Brazil, and/or with North American Borrelia burgdorferi s.s.
Resumo:
During two consecutive years, studies on the sand fly fauna in Poço das Antas and Fazenda Bom Retiro, two Atlantic Rain Forest Reserves from the State of Rio de Janeiro, were performed using Shannon traps, CDC light traps and human bait collections. Eleven species were identified; Lutzomyia longipalpis, L. migonei, L. edwardsi, L. intermedia, L. whitmani, L. fischeri, L. shannoni, L. ayrozai, L. hirsuta, L. monticola and L. misionensis (first occurrence in the State of Rio de Janeiro). L. intermedia and L. whitmani were the predominant anthropophilic species around houses, while L. hirsuta predominated in the forest.
Resumo:
Triatoma guasayana is a silvatic triatomine species distributed in Argentina, Bolivia and Paraguay. The study was performed in a secondary forest of Santiago del Estero, Argentina. The abundance of T. guasayana was evaluated by census in the following wild biotopes: quimiles (Opuntia quimilo), chaguares (dry bromeliads), logs and underground burrows. Ten biotopes of each type were dismantled in winter (August) and another 40 in summer (January); all fauna was recorded. The biotopes most infested by T. guasayana were quimiles (65%), followed by chaguares (55%), and logs (25%). Quimiles and chaguares were infested in both seasons, whereas logs were positive only in summer and burrows were never infested. Infestation and abundance were higher in summer than in winter. The biotope structure is a key factor for T. guasayana colonization. The larger number of refuges, the constant presence of blood sources and suitable inner microclimatic conditions offered by quimiles may favour the persistence of T. guasayana colonies. The richness of invertebrate fauna per type of biotope was ranked in the same order as that of T. guasayana, suggesting similar microhabitat requirements for all studied arthropods.
Resumo:
A total of 128 ticks of the genus Amblyomma were recovered from 5 marsupials (Didelphis albiventris) - with 4 recaptures - and 17 rodents (16 Bolomys lasiurus and 1 Rattus norvegicus) captured in an urban forest reserve in Campo Grande, State of Mato Grosso do Sul, Brazil. Of the ticks collected, 95 (78.9%) were in larval form and 22 (21.1%) were nymphs; the only adult (0.8%) was identified as A. cajennense. Viewed under dark-field microscopy in the fourth month after seeding, 9 cultures prepared from spleens and livers of the rodents, blood of the marsupials, and macerates of Amblyomma sp. nymphs revealed spiral-shaped, spirochete-like structures resembling those of Borrelia sp. Some of them showed little motility, while others were non-motile. No such structures could be found either in positive Giemsa-stained culture smears or under electron microscopy. No PCR amplification of DNA from those cultures could be obtained by employing Leptospira sp., B. burgdorferi, and Borrelia sp. primers. These aspects suggest that the spirochete-like structures found in this study do not fit into the genera Borrelia or Leptospira, requiring instead to be isolated for proper identification.
Resumo:
Oolitic carbonates belonging to the Hauptrogenstein Formation of Bajocian (Middle Jurassic) age have been shown to be anomalously enriched in cadmium (Cd) throughout the Jura Mountains. Soils associated with this type of rock substratum may be naturally polluted with regards to Cd. At Schleifenberg (Canton Basel Land, Switzerland) the Hauptrogenstein Formation is almost entirely exposed along a trail on its SW flank. Cadmium concentrations were systematically measured throughout this formation and Cd enrichments in rocks are shown to occur to a maximum content of 4.9 mg kg(-1). We investigated associated soils, which cover the entire outcrop, and show that they have been formed through the weathering of the underlying bedrock and through the uptake of colluvial limestone fragments from the same and older formations. Cadmium contents in the soils reach a maximum value of 2.0 mg kg(-1), thereby exceeding the official Swiss indicative guideline value for soils fixed at 0.8 mg.kg(-1). Mineralogical analyses on the soils and associated bedrock suggest that no allochthonous component related to aeolian transport is present. Sequential extractions applied to selected soil samples show that about half of the Cd resides in the carbonate fraction coming from the fractured parent-rock, while the Cd released from the weathered carbonates is associated either with organic matter (over 10%) or with Fe and Mn-oxihydroxides (approximately 30%). No exchangeable Cd phase was found and this, together with the buffer capacity of this calcareous soil, suggests that the amount of mobile Cd is quite negligible in this soil, which also greatly reduces the amount of bioavailable
Resumo:
The oxalate-carbonate pathway (OCP) is a biogeochemical process, which has been described in Milicia excelsa tree ecosystems of Africa. This pathway involves biological and geological parameters at different scales: oxalate, as a by-product of photosynthesis, is oxidized by oxalotrophic bacteria leading to a local pH increase, and eventually to carbonate accumulation through time in previously acidic and carbonate-free tropical soils. Former studies have shown that this pedogenic process can potentially lead to the formation of an atmospheric carbon sink. Considering that 80% of plant species are known to produce oxalate, it is reasonable to assume that M. excelsa is not the only tree that can support OCP ecosystems. The search for similar conditions on another continent led us to South America, in an Amazon forest ecosystem (Alto Beni, Bolivia). This area was chosen because of the absence of local inherited carbonate in the bedrock, as well as its expected acidic soil conditions. Eleven tree species and associated soils were tested positive for the presence of carbonate with a more alkaline soil pH close to the tree than at a distance from it. A detailed study of Pentaplaris davidsmithii and Ceiba speciosa trees showed that oxalotrophy impacted soil pH in a similar way to at African sites (at least with 1 pH unit increasing). African and South American sites display similar characteristics regarding the mineralogical assemblage associated with the OCP, except for the absence of weddellite. The amount of carbonate accumulated is 3 to 4 times lower than the values measured in African sites related to M. excelsa ecosystems. Still, these secondary carbonates remain critical for the continental carbon cycle, as they are unexpected in the acidic context of Amazonian soils. Therefore, the present study demonstrates the existence of an active OCP in South America. The three critical components of an operating OCP are the presence of: i) local alkalinization, ii) carbonate accumulations, and iii) oxalotrophic bacteria, which were identified associated to the oxalogenic tree C. speciosa. If the question of a potential carbon sink related to oxalotrophic-oxalogenic ecosystems in the Amazon Basin is still pending, this study highlights the implication of OCP ecosystems on carbon and calcium biogeochemical coupled cycles. As previously mentioned for M. excelsa tree ecosystems in Africa, carbonate accumulations observed in the Bolivian tropical forest could be extrapolated to part or the whole Amazon Basin and might constitute an important reservoir that must be taken into account in the global carbon balance of the Tropics.
Resumo:
A study about the horizontal stratification of the sand fly fauna in two distinct ecosystems, caatinga area, endemic for visceral leishmaniasis, and the tropical rain forest area, endemic for cutaneous leishmaniasis, was performed in the state of Bahia, Brazil. Lutzomyia longipalpis was predominant in the caatinga, and following it came the species L. capixaba and L. oswaldoi. In the tropical rain forest other species were found, such as L. intermedia, L. migonei, L. whitmani, L. yuilli, L.fischeri, L. damascenoi, L. evandroi, L. monticola, and L. lenti. It was found that the geographical limits of the vector species of visceral and cutaneous leishmaniasis are clearly defined by the biological and phytogeographic characteristics.