798 resultados para FOOD-INDUSTRY
Resumo:
Contamination of packaged foods due to micro-organisms entering through air leaks can cause serious public health issues and cost companies large amounts of money due to product recalls, consumer impact and subsequent loss of market share. The main source of contamination is leaks in packaging which allow air, moisture and microorganisms to enter the package. In the food processing and packaging industry worldwide, there is an increasing demand for cost effective state of the art inspection technologies that are capable of reliably detecting leaky seals and delivering products at six-sigma. The new technology will develop non-destructive testing technology using digital imaging and sensing combined with a differential vacuum technique to assess seal integrity of food packages on a high-speed production line. The cost of leaky packages in Australian food industries is estimated close to AUD $35 Million per year. Contamination of packaged foods due to micro-organisms entering through air leaks can cause serious public health issues and cost companies large sums of money due to product recalls, compensation claims and loss of market share. The main source of contamination is leaks in packaging which allow air, moisture and micro-organisms to enter the package. Flexible plastic packages are widely used, and are the least expensive form of retaining the quality of the product. These packets can be used to seal, and therefore maximise, the shelf life of both dry and moist products. The seals of food packages need to be airtight so that the food content is not contaminated due to contact with microorganisms that enter as a result of air leakage. Airtight seals also extend the shelf life of packaged foods, and manufacturers attempt to prevent food products with leaky seals being sold to consumers. There are many current NDT (non-destructive testing) methods of testing the seal of flexible packages best suited to random sampling, and for laboratory purposes. The three most commonly used methods are vacuum/pressure decay, bubble test, and helium leak detection. Although these methods can detect very fine leaks, they are limited by their high processing time and are not viable in a production line. Two nondestructive in-line packaging inspection machines are currently available and are discussed in the literature review. The detailed design and development of the High-Speed Sensing and Detection System (HSDS) is the fundamental requirement of this project and the future prototype and production unit. Successful laboratory testing was completed and a methodical design procedure was needed for a successful concept. The Mechanical tests confirmed the vacuum hypothesis and seal integrity with good consistent results. Electrically, the testing also provided solid results to enable the researcher to move the project forward with a certain amount of confidence. The laboratory design testing allowed the researcher to confirm theoretical assumptions before moving into the detailed design phase. Discussion on the development of the alternative concepts in both mechanical and electrical disciplines enables the researcher to make an informed decision. Each major mechanical and electrical component is detailed through the research and design process. The design procedure methodically works through the various major functions both from a mechanical and electrical perspective. It opens up alternative ideas for the major components that although are sometimes not practical in this application, show that the researcher has exhausted all engineering and functionality thoughts. Further concepts were then designed and developed for the entire HSDS unit based on previous practice and theory. In the future, it would be envisaged that both the Prototype and Production version of the HSDS would utilise standard industry available components, manufactured and distributed locally. Future research and testing of the prototype unit could result in a successful trial unit being incorporated in a working food processing production environment. Recommendations and future works are discussed, along with options in other food processing and packaging disciplines, and other areas in the non-food processing industry.
Resumo:
The objective of this exploratory study is to investigate the main drivers that enhance and inhibit the export performance of Chilean wineries. Based on survey data collected from Chilean wineries, the findings of this study suggest that the main constraints within the Chilean wineries in developing exports is the lack of financial resources, limited quantities of stocks for market expansion, management’s lack of knowledge and experience, and the high cost of travelling and participating in trade shows. The main drivers of wine export performance according to the respondents are high quality of the wines, well established network of international distributors, and marketing skills. The major inhibitors of developing wine exports are exchange rate variability, problems in selecting a reliable international distributor, and limited government support to promote wine exports. This study also shows that export managers of Chilean wineries have high educational levels and have international experience. The findings have important implications for export development efforts of both governments and managers.
Resumo:
The Six Sigma technique is one of the quality management strategies and is utilised for improving the quality and productivity in the manufacturing process. It is inspired by the two major project methodologies of Deming’s "Plan – Do – Check – Act (PDCA)" Cycle which consists of DMAIC and DMADV. Those two methodologies are comprised of five phases. The DMAIC project methodology will be comprehensively used in this research. In brief, DMAIC is utilised for improving the existing manufacturing process and it involves the phases Define, Measure, Analyse, Improve, and Control. Mask industry has become a significant industry in today’s society since the outbreak of some serious diseases such as the Severe Acute Respiratory Syndrome (SARS), bird flu, influenza, swine flu and hay fever. Protecting the respiratory system, then, has become the fundamental requirement for preventing respiratory deceases. Mask is the most appropriate and protective product inasmuch as it is effective in protecting the respiratory tract and resisting the virus infection through air. In order to satisfy various customers’ requirements, thousands of mask products are designed in the market. Moreover, masks are also widely used in industries including medical industries, semi-conductor industries, food industries, traditional manufacturing, and metal industries. Notwithstanding the quality of masks have become the prioritisations since they are used to prevent dangerous diseases and safeguard people, the quality improvement technique are of very high significance in mask industry. The purpose of this research project is firstly to investigate the current quality control practices in a mask industry, then, to explore the feasibility of using Six Sigma technique in that industry, and finally, to implement the Six Sigma technique in the case company to develop and evaluate the product quality process. This research mainly investigates the quality problems of musk industry and effectiveness of six sigma technique in musk industry with the United Excel Enterprise Corporation (UEE) Company as a case company. The DMAIC project methodology in the Six Sigma technique is adopted and developed in this research. This research makes significant contribution to knowledge. The main results contribute to the discovering the root causes of quality problems in a mask industry. Secondly, the company was able to increase not only acceptance rate but quality level by utilising the Six Sigma technique. Hence, utilising the Six Sigma technique could increase the production capacity of the company. Third, the Six Sigma technique is necessary to be extensively modified to improve the quality control in the mask industry. The impact of the Six Sigma technique on the overall performance in the business organisation should be further explored in future research.
Resumo:
Drying is very energy intensive process and consumes about 20-25% of the energy used by food processing industry. The energy efficiency of the process and quality of dried product are two key factors in food drying. Global energy crisis and demand for quality dried food further challenge researchers to explore innovative techniques in food drying to address these issues. Intermittent drying is considered one of the promising solutions for improving energy efficiency and product quality without increasing the capital cost of the drier. Intermittent drying has already received much attention. However, a comprehensive review of recent progresses and overall assessment of energy efficiency and product quality in intermittent drying is lacking. The objective of this article is to discuss, analyze and evaluate the recent advances in intermittent drying research with energy efficiency and product quality as standpoint. Current available modelling techniques for intermittent drying are reviewed and their merits and demerits are analyzed. Moreover, intermittent application of ultrasound, infrared (IR) and microwave in combined drying technology have been reviewed and discussed. In this review article the gaps in the current literature are highlighted, some important future scopes for theoretical and experimental studies are identified and the direction of further research is suggested.
Resumo:
A food supply that delivers energy-dense products with high levels of salt, saturated fats and trans fats, in large portion sizes, is a major cause of non-communicable diseases (NCDs). The highly processed foods produced by large food corporations are primary drivers of increases in consumption of these adverse nutrients. The objective of this paper is to present an approach to monitoring food composition that can both document the extent of the problem and underpin novel actions to address it. The monitoring approach seeks to systematically collect information on high-level contextual factors influencing food composition and assess the energy density, salt, saturated fat, trans fats and portion sizes of highly processed foods for sale in retail outlets (with a focus on supermarkets and quick-service restaurants). Regular surveys of food composition are proposed across geographies and over time using a pragmatic, standardized methodology. Surveys have already been undertaken in several high- and middle-income countries, and the trends have been valuable in informing policy approaches. The purpose of collecting data is not to exhaustively document the composition of all foods in the food supply in each country, but rather to provide information to support governments, industry and communities to develop and enact strategies to curb food-related NCDs.
Resumo:
The global food system is undergoing unprecedented change. With population increases, demands for food globally will continue to rise at the same time that agricultural environments are compromised through urban encroachment, climate change and environmental degradation. Australia has long identified itself as an agricultural exporting nation—but what will its capacity be in feeding an increasing global population as it also comes to terms with extreme climatic events such as the floods, fires and droughts, and reduced water availability, experienced in recent decades? This chapter traces the history of Australian agricultural exports and evaluates its food production and export capacity against scientific predictions of climate change impacts. With the federal government forecasting declines in the production of wheat, beef, dairy and sugar, Australia’s key export commodities may well be compromised. Calls to produce more food using new technologies are likely to generate significant environmental problems. Yet, a radical reconfiguration of Australian agriculture which incorporates alternative approaches, such as agro-ecology, is rarely considered by government and industry.
Resumo:
The current view of Australian state and national governments about the effects of climate change on agriculture is that farmers – through the adoption of mitigation and adaptation strategies – will remain resilient, and agricultural production will continue to expand. The assumption is that neoliberalism will provide the best ‘free market’ options for climate change mitigation and adaptation in farming. In contrast, we argue that neoliberalism will increase the move towards productivis (‘high-tech’) agriculture – the very system that has caused major environmental damage to the Australian continent. High-tech farming is highly dependent upon access to water and fossil fuels, both of which would appear to be the main limits to production in future decades. Productivist agriculture is a system highly reliant upon fertilizers and fuels that are derived from the petrochemical industry, and are currently increasing in cost as the price of oil increases.
Resumo:
For over 150 years Australia has exported bulk, undifferentiated, commodities such as wool, wheat, meat and sugar to the UK and more recently to Japan, Korea, and the Middle East. It is estimated that, each year, Australia's farming system feeds a domestic population of some 22 million people, while exporting enough food to feed another 40 million. With the Australian population expected to double in the next 40 years, and with the anticipated growth in the world's population to reach a level of some 9 billion (from its present level of 7 billion) in the same period, there are strong incentives for an expansion of food production in Australia. Neoliberal settings are encouraging this expansion at the same time as they are facilitating importation of foods, higher levels of foreign direct investment and the commoditisation of resources (such as water). Yet, expansion in food production – and in an era of climate change – will continue to compromise the environment. After discussing Australia's neoliberal framework and its relation to farming, this paper outlines how Australia is attempting to address the issue of food security. It argues that productivist farming approaches that are favoured by both industry and government are proving incapable of bringing about long-term production outcomes that will guarantee national food security.
Resumo:
The global demand for food, feed, energy and water poses extraordinary challenges for future generations. It is evident that robust platforms for the exploration of renewable resources are necessary to overcome these challenges. Within the multinational framework MultiBioPro we are developing biorefinery pipelines to maximize the use of plant biomass. More specifically, we use poplar and tobacco tree (Nicotiana glauca) as target crop species for improving saccharification, isoprenoid, long chain hydrocarbon contents, fiber quality, and suberin and lignin contents. The methods used to obtain these outputs include GC-MS, LC-MS and RNA sequencing platforms. The metabolite pipelines are well established tools to generate these types of data, but also have the limitations in that only well characterized metabolites can be used. The deep sequencing will allow us to include all transcripts present during the developmental stages of the tobacco tree leaf, but has to be mapped back to the sequence of Nicotiana tabacum. With these set-ups, we aim at a basic understanding for underlying processes and at establishing an industrial framework to exploit the outcomes. In a more long term perspective, we believe that data generated here will provide means for a sustainable biorefinery process using poplar and tobacco tree as raw material. To date the basal level of metabolites in the samples have been analyzed and the protocols utilized are provided in this article.
Resumo:
INTRODUCTION Globally, one-third of food production is lost annually due to negligent authorities. India alone loses some 21 million tonnes of wheat per year even while it has 200 million food-insecure people in the nation. Disturbingly provocative as it may sound, it is amazing how national and international institutions and governments make use of human hunger for their own survival (Raghib 2013). The global food system is increasingly insecure. Challenges to long-term global food security are encapsulated by resource scarcity, environmental degradation, biodiversity loss, climate change, reductions of farm labour and a growing world population. These issues are caused and aggravated by the spread of corporatised and monopolised food systems, dietary change, and urbanisation. These factors have rapidly brought food insecurity under the umbrella of unconventional security threats (Heukelom 2011). For some, humanitarian crises associated with food insecurity, or what has been dubbed ‘the silent tsunami’, is a pending peril, notably for the world’s poorest and most vulnerable people. For others, the food production industry is an emerging market with unprecedented profits. Despite this problem of food scarcity we are witnessing extraordinary ‘food wastage’, notably in North America and Europe, on a scale that would reportedly be capable of feeding the world’s hungry six times over (Stuart 2012). As the opening quotation to this chapter suggests, governments and corporations are deeply involved in the contexts, politics, and resources associated with food related issues. As many economically developed and advanced industrial nations are reporting a rise out of recession, announcements are made by the world’s richest countries that they are to cut $US2 billion per year from food aid. The head of the World Food Aid Programme, Rosette Sheeran, warns that such cuts could result in ‘the loss of a generation’ (Walters 2011). The global food crisis has also reinvigorated debates about agricultural development and genetically modified (GM) food; as well as fuelling debates about poverty, debt and security. This chapter provides a discussion of the political economy of global food debates and explores the threats and opportunities surrounding food production and future food security.
Resumo:
“World food security … is at its lowest in half a century,” wrote Julian Cribb FTSE, a wellknown consultant in science communication and founding editor of www.sciencealert. com.au in the lead article in the 2008 ATSE Focus magazine issue entitled “Food for the world: the nation’s challenge”. Food security continues to be a key national and international concern and it is pleasing to see this issue of Focus again exploring aspects of the topic with the aim of continuing to raise awareness of issues and influencing relevant policy decisions. Statistics (or statistical science, more broadly) has been critical to the information and decision-making value chain needed to optimise agriculture and the food supply chain. The key steps are most often addressed by multidisciplinary research groups including statisticians in collaboration with life and physical scientists, agri-industry personnel and other relevant stakeholders.
Resumo:
This thesis is a trans-disciplinary study of domestic food waste in Australia. Firstly, it examines why consumers are prone to waste food. Secondly, it explores several situated design interventions to reduce domestic food waste by informing consumer food supply and location awareness, and improving the level of food literacy among consumers. The thesis outcomes have implications for academic and industry domains within the fields of Human-Computer Interaction, urban informatics, environmental sustainability, food security and public health.
Resumo:
In recent years, there has been increasing interest from growers, merchants, supermarkets and consumers in the establishment of a national mild onion industry. Imperative to the success of the emergent industry is the application of the National Mild Onion Certification Scheme that will establish standards and recommendations to be met by growers to allow them to declare their product as certified mild onions. The use of sensory evaluation techniques has played an imperative role throughout the project timeline that has also included varietal evaluation, evaluation of current agronomic practices and correlation of chemical analysis data. Raw onion consumer acceptance testing on five different onion varieties established preferences amongst the varieties for odour, appearance, flavour, texture and overall and differences in the level of pungency and aftertaste perceived. Demographic information was obtained regarding raw and cooked onion use, frequency of consumption and responses to the idea of a mild, less pungent onion. Additionally, focus groups were conducted to further investigate consumer attitudes to onions. Currently, a trained onion panel is being established to evaluate several odour, flavour and aftertaste attributes. Sample assessments will be conducted in January 2004 and correlated with chemical analyses that will hopefully provide the corner-stone for the anticipated Certification Scheme.
Resumo:
This paper describes adoption rates of environmental assurance within meat and wool supply chains, and discusses this in terms of market interest and demand for certified 'environmentally friendly' products, based on phone surveys and personal interviews with pastoral producers, meat and wool processors, wholesalers and retailers, and domestic consumers. Members of meat and wool supply chains, particularly pastoral producers, are both aware of and interested in implementing various forms of environmental assurance, but significant costs combined with few private benefits have resulted in low adoption rates. The main reason for the lack of benefits is that the end user (the consumer) does not value environmental assurance and is not willing to pay for it. For this reason, global food and fibre supply chains, which compete to supply consumers with safe and quality food at the lowest price, resist public pressure to implement environmental assurance. This market failure is further exacerbated by highly variable environmental and social production standards required of primary producers in different countries, and the disparate levels of government support provided to them. Given that it is the Australian general public and not markets that demand environmental benefits from agriculture, the Australian government has a mandate to use public funds to counter this market failure. A national farm environmental policy should utilise a range of financial incentives to reward farmers for delivering general public good environmental outcomes, with these specified and verified through a national environmental assurance scheme.
Resumo:
This paper outlines the expectations of a wide range of stakeholders for environmental assurance in the pastoral industries and agriculture generally. Stakeholders consulted were domestic consumers, rangeland graziers, members of environmental groups, companies within meat and wool supply chains, and agricultural industry, environmental and consumer groups. Most stakeholders were in favour of the application of environmental assurance to agriculture, although supply chains and consumers had less enthusiasm for this than environmental and consumer groups. General public good benefits were more important to environmental and consumer groups, while private benefits were more important to consumers and supply chains. The 'ideal' form of environmental assurance appears to be a management system that provides for continuous improvement in environmental, quality and food safety outcomes, combined with elements of ISO 14024 eco-labelling such as life-cycle assessment, environmental performance criteria, third-party certification, labelling and multi-stakeholder involvement. However, market failure prevents this from being implemented and will continue to do so for the foreseeable future. In the short term, members of supply chains (the people that must implement and fund environmental assurance) want this to be kept simple and low cost, to be built into their existing industry standards and to add value to their businesses. As a starting point, several agricultural industry organisations favour the use of a basic management system, combining continuous improvement, risk assessment and industry best management practice programs, which can be built on over time to meet regulator, market and community expectations.