685 resultados para Extrahepatic pancreas


Relevância:

10.00% 10.00%

Publicador:

Resumo:

— In 2000, according to the World Health Organization, at least 171 million people, 2.8% of the population worldwide, suffered from diabetes. The Centres for Disease Control has defined it as an epidemic disease. Its incidence is increasing rapidly, and it is estimated that by 2030 this number will almost double. Diabetes mellitus occurs throughout the world, but is more common (especially type 2) in the more developed countries. Diabetes is a chronic condition that occurs when pancreas does not assure enough insulin secretion or when the body does not consume the insulin produced. Insulin is a hormone that regulates blood sugar. The effect of uncontrolled diabetes is the hyperglycaemia (blood sugar), which eventually seriously damage many organs and systems, especially the nerves and blood vessels. Diabetes type 2 (most common type of diabetes) is highly correlated with elderly people, obesity or overweight. Promoting a healthy lifestyle helps patients to improve their quality of life and in many cases to avoid complications related to the disease. This paper is intended to describe an iPhone-based application for self-management of type 2 diabetic patients, which allow them improving their lifestyle through healthy diet, physical activity and education

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La diabetes mellitus es una enfermedad que se caracteriza por la nula o insuficiente producción de insulina, o la resistencia del organismo a la misma. La insulina es una hormona que ayuda a que la glucosa (por ejemplo la obtenida a partir de los alimentos ingeridos) llegue a los tejidos periféricos y al sistema nervioso para suministrar energía. Hoy en día la tecnología actual permite abordar el desarrollo del llamado “páncreas endocrino artificial”, que consta de un sensor continuo de glucosa subcutánea, una bomba de infusión subcutánea de insulina y un algoritmo de control en lazo cerrado que calcule la dosis de insulina requerida por el paciente en cada momento, según la medida de glucosa obtenida por el sensor y según unos objetivos. El mayor problema que presentan los sistemas de control en lazo cerrado son los retardos, el sensor de glucosa subcutánea mide la glucosa del líquido intersticial, que representa la que hubo en la sangre un tiempo atrás, por tanto, un cambio en los niveles de glucosa en la sangre, debidos por ejemplo, a una ingesta, tardaría un tiempo en ser detectado por el sensor. Además, una dosis de insulina suministrada al paciente, tarda un tiempo aproximado de 20-30 minutos para la llegar a la sangre. Para evitar trabajar en la medida que sea posible con estos retardos, se intenta predecir cuál será el nivel de glucosa en un futuro próximo, para ello se utilizara un predictor de glucosa subcutánea, con la información disponible de glucosa e insulina. El objetivo del proyecto es diseñar una metodología para estimar el valor futuro de los niveles de glucosa obtenida a partir de un sensor subcutáneo, basada en la identificación recursiva del sistema glucorregulatorio a través de modelos lineales y determinando un horizonte de predicción óptimo de trabajo y analizando la influencia de la insulina en los resultados de la predicción. Se ha implementado un predictor paramétrico basado en un modelo autorregresivo ARX que predice con mejor precisión y con menor RMSE que un predictor ZOH a un horizonte de predicción de treinta minutos. Utilizar información relativa a la insulina no tiene efecto en la predicción. El preprocesado, postprocesado y el tratamiento de la estabilidad tienen un efecto muy beneficioso en la predicción. Diabetes mellitusis a group of metabolic diseases in which a person has high blood sugar, either because the body does not produce enough insulin, or because cells do not respond to the insulin produced. The insulin is a hormone that helps the glucose to reach to outlying tissues and the nervous system to supply energy. Nowadays, the actual technology allows raising the development of the “artificial endocrine pancreas”. It involves a continuous glucose sensor, an insulin bump, and a full closed loop algorithm that calculate the insulin units required by patient at any time, according to the glucose measure obtained by the sensor and any target. The main problem of the full closed loop systems is the delays, the glucose sensor measures the glucose in the interstitial fluid that represents the glucose was in the blood some time ago. Because of this, a change in the glucose in blood would take some time to be detected by the sensor. In addition, insulin units administered by a patient take about 20-30 minutes to reach the blood stream. In order to avoid this effect, it will try to predict the glucose level in the near future. To do that, a subcutaneous glucose predictor is used to predict the future glucose with the information about insulin and glucose. The goal of the proyect is to design a method in order to estimate the future valor of glucose obtained by a subcutaneous sensor. It is based on the recursive identification of the regulatory system through the linear models, determining optimal prediction horizon and analyzing the influence of insuline on the prediction results. A parametric predictor based in ARX autoregressive model predicts with better precision and with lesser RMSE than ZOH predictor in a thirty minutes prediction horizon. Using the relative insulin information has no effect in the prediction. The preprocessing, the postprocessing and the stability treatment have many advantages in the prediction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La diabetes mellitus es un trastorno del metabolismo de los carbohidratos producido por la insuficiente o nula producción de insulina o la reducida sensibilidad a esta hormona. Es una enfermedad crónica con una mayor prevalencia en los países desarrollados debido principalmente a la obesidad, la vida sedentaria y disfunciones en el sistema endocrino relacionado con el páncreas. La diabetes Tipo 1 es una enfermedad autoinmune en la que son destruidas las células beta del páncreas, que producen la insulina, y es necesaria la administración de insulina exógena. Un enfermo de diabetes Tipo 1 debe seguir una terapia con insulina administrada por la vía subcutánea que debe estar adaptada a sus necesidades metabólicas y a sus hábitos de vida, esta terapia intenta imitar el perfil insulínico de un páncreas no patológico. La tecnología actual permite abordar el desarrollo del denominado “páncreas endocrino artificial”, que aportaría precisión, eficacia y seguridad para los pacientes, en cuanto a la normalización del control glucémico y reducción del riesgo de hipoglucemias. Permitiría que el paciente no estuviera tan pendiente de su enfermedad. El páncreas artificial consta de un sensor continuo de glucosa, una bomba de infusión de insulina y un algoritmo de control, que calcula la insulina a infusionar usando la glucosa como información principal. Este trabajo presenta un método de control en lazo semi-cerrado mediante un sistema borroso experto basado en reglas. La regulación borrosa se fundamenta en la ambigüedad del lenguaje del ser humano. Esta incertidumbre sirve para la formación de una serie de reglas que representan el pensamiento humano, pero a la vez es el sistema que controla un proceso, en este caso el sistema glucorregulatorio. Este proyecto está enfocado en el diseño de un controlador borroso que haciendo uso de variables como la glucosa, insulina y dieta, sea capaz de restaurar la función endocrina del páncreas de forma tecnológica. La validación del algoritmo se ha realizado principalmente mediante experimentos en simulación utilizando una población de pacientes sintéticos, evaluando los resultados con estadísticos de primer orden y algunos más específicos como el índice de riesgo de Kovatchev, para después comparar estos resultados con los obtenidos por otros métodos de control anteriores. Los resultados demuestran que el control borroso (FBPC) mejora el control glucémico con respecto a un sistema predictivo experto basado en reglas booleanas (pBRES). El FBPC consigue reducir siempre la glucosa máxima y aumentar la mínima respecto del pBRES pero es en terapias desajustadas, donde el FBPC es especialmente robusto, hace descender la glucosa máxima 8,64 mg/dl, el uso de insulina es 3,92 UI menor, aumenta la glucosa mínima 3,32 mg/dl y lleva al rango de glucosa 80 – 110 mg/dl 15,33 muestras más. Por lo tanto se puede concluir que el FBPC realiza un mejor control glucémico que el controlador pBRES haciéndole especialmente efectivo, robusto y seguro en condiciones de desajustes de terapia basal y con gran capacidad de mejora futura. SUMMARY The diabetes mellitus is a metabolic disorder caused by a poor or null insulin secretion or a reduced sensibility to insulin. Diabetes is a chronic disease with a higher prevalence in the industrialized countries, mainly due to obesity, the sedentary life and endocrine disfunctions connected with the pancreas. Type 1 diabetes is a self-immune disease where the beta cells of the pancreas, which are the responsible of secreting insulin, are damaged. Hence, it is necessary an exogenous delivery of insulin. The Type 1 diabetic patient has to follow a therapy with subcutaneous insulin administration which should be adjusted to his/her metabolic needs and life style. This therapy tries to mimic the insulin profile of a non-pathological pancreas. Current technology lets the development of the so-called endocrine artificial pancreas that would provide accuracy, efficiency and safety to patients, in regards to the glycemic control normalization and reduction of the risk of hypoglycemic. In addition, it would help the patient not to be so concerned about his disease. The artificial pancreas has a continuous glucose sensor, an insulin infusion pump and a control algorithm, that calculates the insulin infusion using the glucose as main information. This project presents a method of control in semi-closed-loop, through an expert fuzzy system based on rules. The fuzzy regulation is based on the human language ambiguity. This uncertainty serves for construction of some rules that represent the human language besides it is the system that controls a process, in this case the glucoregulatory system. This project is focus on the design of a fuzzy controller that, using variables like glucose insulin and diet, will be able to restore the pancreas endocrine function with technology. The algorithm assessment has mainly been done through experiments in simulation using a population of synthetic patients, evaluating the results with first order statistical parameters and some other more specific such as the Kovatchev risk index, to compare later these results with the ones obtained in others previous methods of control. The results demonstrate that the fuzzy control (FBPC) improves the glycemic control connected with a predictive expert system based on Booleans rules (pBRES). The FBPC is always able to reduce the maximum level of glucose and increase the minimum level as compared with pBRES but it is in unadjusted therapies where FBPC is especially strong, it manages to decrease the maximum level of glucose and insulin used by 8,64 mg/dl and 3,92 UI respectively, also increases the value of minimum glucose by 3,32 mg/dl, getting 15,33 samples more inside the 80-110 mg/dl glucose rank. Therefore we can conclude that FBPC achieves a better glycemic control than the controller pBRES doing it especially effective, robust and safe in conditions of mismatch basal therapy and with a great capacity for future improvements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La Diabetes Mellitus se define como el trastorno del metabolismo de los carbohidratos, resultante de una producción insuficiente o nula de insulina en las células beta del páncreas, o la manifestación de una sensibilidad reducida a la insulina por parte del sistema metabólico. La diabetes tipo 1 se caracteriza por la nula producción de insulina por la destrucción de las células beta del páncreas. Si no hay insulina en el torrente sanguíneo, la glucosa no puede ser absorbida por las células, produciéndose un estado de hiperglucemia en el paciente, que a medio y largo plazo si no es tratado puede ocasionar severas enfermedades, conocidos como síndromes de la diabetes. La diabetes tipo 1 es una enfermedad incurable pero controlable. La terapia para esta enfermedad consiste en la aplicación exógena de insulina con el objetivo de mantener el nivel de glucosa en sangre dentro de los límites normales. Dentro de las múltiples formas de aplicación de la insulina, en este proyecto se usará una bomba de infusión, que unida a un sensor subcutáneo de glucosa permitirá crear un lazo de control autónomo que regule la cantidad optima de insulina aplicada en cada momento. Cuando el algoritmo de control se utiliza en un sistema digital, junto con el sensor subcutáneo y bomba de infusión subcutánea, se conoce como páncreas artificial endocrino (PAE) de uso ambulatorio, hoy día todavía en fase de investigación. Estos algoritmos de control metabólico deben de ser evaluados en simulación para asegurar la integridad física de los pacientes, por lo que es necesario diseñar un sistema de simulación mediante el cual asegure la fiabilidad del PAE. Este sistema de simulación conecta los algoritmos con modelos metabólicos matemáticos para obtener una visión previa de su funcionamiento. En este escenario se diseñó DIABSIM, una herramienta desarrollada en LabViewTM, que posteriormente se trasladó a MATLABTM, y basada en el modelo matemático compartimental propuesto por Hovorka, con la que poder simular y evaluar distintos tipos de terapias y reguladores en lazo cerrado. Para comprobar que estas terapias y reguladores funcionan, una vez simulados y evaluados, se tiene que pasar a la experimentación real a través de un protocolo de ensayo clínico real, como paso previo al PEA ambulatorio. Para poder gestionar este protocolo de ensayo clínico real para la verificación de los algoritmos de control, se creó una interfaz de usuario a través de una serie de funciones de simulación y evaluación de terapias con insulina realizadas con MATLABTM (GUI: Graphics User Interface), conocido como Entorno de Páncreas artificial con Interfaz Clínica (EPIC). EPIC ha sido ya utilizada en 10 ensayos clínicos de los que se han ido proponiendo posibles mejoras, ampliaciones y/o cambios. Este proyecto propone una versión mejorada de la interfaz de usuario EPIC propuesta en un proyecto anterior para gestionar un protocolo de ensayo clínico real para la verificación de algoritmos de control en un ambiente hospitalario muy controlado, además de estudiar la viabilidad de conectar el GUI con SimulinkTM (entorno gráfico de Matlab de simulación de sistemas) para su conexión con un nuevo simulador de pacientes aprobado por la JDRF (Juvenil Diabetes Research Foundation). SUMMARY The diabetes mellitus is a metabolic disorder of carbohydrates, as result of an insufficient or null production of insulin in the beta cellules of pancreas, or the manifestation of a reduced sensibility to the insulin from the metabolic system. The type 1 diabetes is characterized for a null production of insulin due to destruction of the beta cellules. Without insulin in the bloodstream, glucose can’t be absorbed by the cellules, producing a hyperglycemia state in the patient and if pass a medium or long time and is not treated can cause severe disease like diabetes syndrome. The type 1 diabetes is an incurable disease but controllable one. The therapy for this disease consists on the exogenous insulin administration with the objective to maintain the glucose level in blood within the normal limits. For the insulin administration, in this project is used an infusion pump, that permit with a subcutaneous glucose sensor, create an autonomous control loop that regulate the optimal insulin amount apply in each moment. When the control algorithm is used in a digital system, with the subcutaneous senor and infusion subcutaneous pump, is named as “Artificial Endocrine Pancreas” for ambulatory use, currently under investigate. These metabolic control algorithms should be evaluates in simulation for assure patients’ physical integrity, for this reason is necessary to design a simulation system that assure the reliability of PAE. This simulation system connects algorithms with metabolic mathematics models for get a previous vision of its performance. In this scenario was created DIABSIMTM, a tool developed in LabView, that later was converted to MATLABTM, and based in the compartmental mathematic model proposed by Hovorka that could simulate and evaluate several different types of therapy and regulators in closed loop. To check the performance of these therapies and regulators, when have been simulated and evaluated, will be necessary to pass to real experimentation through a protocol of real clinical test like previous step to ambulatory PEA. To manage this protocol was created an user interface through the simulation and evaluation functions od therapies with insulin realized with MATLABTM (GUI: Graphics User Interface), known as “Entorno de Páncreas artificial con Interfaz Clínica” (EPIC).EPIC have been used in 10 clinical tests which have been proposed improvements, adds and changes. This project proposes a best version of user interface EPIC proposed in another project for manage a real test clinical protocol for checking control algorithms in a controlled hospital environment and besides studying viability to connect the GUI with SimulinkTM (Matlab graphical environment in systems simulation) for its connection with a new patients simulator approved for the JDRF (Juvenil Diabetes Research Foundation).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La diabetes mellitus es una enfermedad que se caracteriza por la nula o insuficiente producción de insulina, o la resistencia del organismo a la misma. La insulina es una hormona que ayuda a que la glucosa llegue a los tejidos periféricos y al sistema nervioso para suministrar energía. Actualmente existen dos tipos de terapias aplicada en tejido subcutáneo: mediante inyección múltiple realizada con plumas, y la otra es mediante infusión continua de insulina por bomba (CSII). El mayor problema de esta terapia son los retardos por la absorción, tanto de los carbohidratos como de la insulina, y los retardos introducidos por el sensor subcutáneo de glucosa que mide la glucosa del líquido intersticial, lo deseable es controlar la glucosa en sangre. Para intentar independizar al paciente de su enfermedad se está trabajando en el desarrollo del páncreas endocrino artificial (PEA) que dotaría al paciente de una bomba de insulina, un sensor de glucosa y un controlador, el cual se encargaría de la toma de decisiones de las infusiones de insulina. Este proyecto persigue el diseño de un regulador en modo de funcionamiento en CL, con el objetivo de conseguir una regulación óptima del nivel de glucosa en sangre. El diseño de dicho regulador va a ser acometido utilizando la teoría del control por modelo interno (IMC). Esta teoría se basa en la idea de que es necesario realimentar la respuesta de un modelo aproximado del proceso que se quiere controlar. La salida del modelo, comparada con la del proceso real nos da la incertidumbre del modelo de la planta, frente a la planta real. Dado que según la teoría del modelo interno, estas diferencias se dan en las altas frecuencias, la teoría IMC propone un filtro paso bajo como regulador en serie con la inversa del modelo de la planta para conseguir el comportamiento deseado. Además se pretende implementar un Predictor Smith para minimizar los efectos del retardo de la medida del sensor. En el proyecto para conseguir la viabilidad del PEA se ha adaptado el controlador IMC clásico utilizando las ganancias estáticas de un modelo de glucosa, a partir de la ruta subcutánea de infusión y la vía subcutánea de medida. El modo de funcionamiento del controlador en SCL mejora el rango de normoglucemia, necesitando la intervención del paciente indicando anticipadamente el momento de las ingestas al controlador. El uso de un control SCL con el Predictor de Smith mejora los resultados pues se añade al controlador una variable sobre las ingestas con la participación del paciente. ABSTRACT. Diabetes mellitus is a group of metabolic diseases in which a person has high blood sugar, due to the body does not produce enough insulin, or because cells do not respond to the insulin produced. The insulin is a hormone that helps the glucose to reach to outlying tissues and the nervous system to supply energy. There are currently two types of therapies applied in subcutaneous tissue: the first one consists in using the intensive therapy with an insulin pen, and the other one is by continuous subcutaneous insulin infusion (CSII). The biggest problems of this therapy are the delays caused by the absorption of carbohydrates and insulin, and the delays introduced by the subcutaneous glucose sensor that measures glucose from interstitial fluid, it is suitable to control glucose blood. To try to improve these patients quality of life, work is being done on the development of an artificial endocrine pancreas (PEA) consisting of a subcutaneous insulin pump, a subcutaneous glucose sensor and an algorithm of glucose control, which would calculate the bolus that the pump would infuse to patient. This project aims to design a controller for closed-loop therapy, with the objective of obtain an optimal regulation of blood glucose level. The design of this controller will be formed using the theory of internal model control (IMC). This theory is based on the uncertainties given by a model to feedback the system control. Output model, in comparison with the actual process gives the uncertainty of the plant model, compared to the real plant. Since the theory of the internal model, these differences occur at high frequencies, the theory proposes IMC as a low pass filter regulator in series with the inverse model of the plant to get the required behavior. In addition, it will implement a Smith Predictor to minimize the effects of the delay measurement sensor. The project for the viability of PEA has adapted the classic IMC controller using the gains static of glucose model from the subcutaneous infusion and subcutaneous measuring. In simulation the SemiClosed-Loop controller get on the normoglycemia range, requiring patient intervention announce the bolus priming connected to intakes. Using an SCL control with the Smith Predictor improves the outcome because a variable about intakes is added to the controller through patient intervention.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper a Glucose-Insulin regulator for Type 1 Diabetes using artificial neural networks (ANN) is proposed. This is done using a discrete recurrent high order neural network in order to identify and control a nonlinear dynamical system which represents the pancreas? beta-cells behavior of a virtual patient. The ANN which reproduces and identifies the dynamical behavior system, is configured as series parallel and trained on line using the extended Kalman filter algorithm to achieve a quickly convergence identification in silico. The control objective is to regulate the glucose-insulin level under different glucose inputs and is based on a nonlinear neural block control law. A safety block is included between the control output signal and the virtual patient with type 1 diabetes mellitus. Simulations include a period of three days. Simulation results are compared during the overnight fasting period in Open-Loop (OL) versus Closed- Loop (CL). Tests in Semi-Closed-Loop (SCL) are made feedforward in order to give information to the control algorithm. We conclude the controller is able to drive the glucose to target in overnight periods and the feedforward is necessary to control the postprandial period.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Type 1 diabetes-mellitus implies a life-threatening absolute insulin deficiency. Artificial pancreas (CGM sensor, insulin pump and control algorithm) is promising to outperform current open-loop therapies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La diabetes mellitus es un trastorno en la metabolización de los carbohidratos, caracterizado por la nula o insuficiente segregación de insulina (hormona producida por el páncreas), como resultado del mal funcionamiento de la parte endocrina del páncreas, o de una creciente resistencia del organismo a esta hormona. Esto implica, que tras el proceso digestivo, los alimentos que ingerimos se transforman en otros compuestos químicos más pequeños mediante los tejidos exocrinos. La ausencia o poca efectividad de esta hormona polipéptida, no permite metabolizar los carbohidratos ingeridos provocando dos consecuencias: Aumento de la concentración de glucosa en sangre, ya que las células no pueden metabolizarla; consumo de ácidos grasos mediante el hígado, liberando cuerpos cetónicos para aportar la energía a las células. Esta situación expone al enfermo crónico, a una concentración de glucosa en sangre muy elevada, denominado hiperglucemia, la cual puede producir a medio o largo múltiples problemas médicos: oftalmológicos, renales, cardiovasculares, cerebrovasculares, neurológicos… La diabetes representa un gran problema de salud pública y es la enfermedad más común en los países desarrollados por varios factores como la obesidad, la vida sedentaria, que facilitan la aparición de esta enfermedad. Mediante el presente proyecto trabajaremos con los datos de experimentación clínica de pacientes con diabetes de tipo 1, enfermedad autoinmune en la que son destruidas las células beta del páncreas (productoras de insulina) resultando necesaria la administración de insulina exógena. Dicho esto, el paciente con diabetes tipo 1 deberá seguir un tratamiento con insulina administrada por la vía subcutánea, adaptado a sus necesidades metabólicas y a sus hábitos de vida. Para abordar esta situación de regulación del control metabólico del enfermo, mediante una terapia de insulina, no serviremos del proyecto “Páncreas Endocrino Artificial” (PEA), el cual consta de una bomba de infusión de insulina, un sensor continuo de glucosa, y un algoritmo de control en lazo cerrado. El objetivo principal del PEA es aportar al paciente precisión, eficacia y seguridad en cuanto a la normalización del control glucémico y reducción del riesgo de hipoglucemias. El PEA se instala mediante vía subcutánea, por lo que, el retardo introducido por la acción de la insulina, el retardo de la medida de glucosa, así como los errores introducidos por los sensores continuos de glucosa cuando, se descalibran dificultando el empleo de un algoritmo de control. Llegados a este punto debemos modelar la glucosa del paciente mediante sistemas predictivos. Un modelo, es todo aquel elemento que nos permita predecir el comportamiento de un sistema mediante la introducción de variables de entrada. De este modo lo que conseguimos, es una predicción de los estados futuros en los que se puede encontrar la glucosa del paciente, sirviéndonos de variables de entrada de insulina, ingesta y glucosa ya conocidas, por ser las sucedidas con anterioridad en el tiempo. Cuando empleamos el predictor de glucosa, utilizando parámetros obtenidos en tiempo real, el controlador es capaz de indicar el nivel futuro de la glucosa para la toma de decisones del controlador CL. Los predictores que se están empleando actualmente en el PEA no están funcionando correctamente por la cantidad de información y variables que debe de manejar. Data Mining, también referenciado como Descubrimiento del Conocimiento en Bases de Datos (Knowledge Discovery in Databases o KDD), ha sido definida como el proceso de extracción no trivial de información implícita, previamente desconocida y potencialmente útil. Todo ello, sirviéndonos las siguientes fases del proceso de extracción del conocimiento: selección de datos, pre-procesado, transformación, minería de datos, interpretación de los resultados, evaluación y obtención del conocimiento. Con todo este proceso buscamos generar un único modelo insulina glucosa que se ajuste de forma individual a cada paciente y sea capaz, al mismo tiempo, de predecir los estados futuros glucosa con cálculos en tiempo real, a través de unos parámetros introducidos. Este trabajo busca extraer la información contenida en una base de datos de pacientes diabéticos tipo 1 obtenidos a partir de la experimentación clínica. Para ello emplearemos técnicas de Data Mining. Para la consecución del objetivo implícito a este proyecto hemos procedido a implementar una interfaz gráfica que nos guía a través del proceso del KDD (con información gráfica y estadística) de cada punto del proceso. En lo que respecta a la parte de la minería de datos, nos hemos servido de la denominada herramienta de WEKA, en la que a través de Java controlamos todas sus funciones, para implementarlas por medio del programa creado. Otorgando finalmente, una mayor potencialidad al proyecto con la posibilidad de implementar el servicio de los dispositivos Android por la potencial capacidad de portar el código. Mediante estos dispositivos y lo expuesto en el proyecto se podrían implementar o incluso crear nuevas aplicaciones novedosas y muy útiles para este campo. Como conclusión del proyecto, y tras un exhaustivo análisis de los resultados obtenidos, podemos apreciar como logramos obtener el modelo insulina-glucosa de cada paciente. ABSTRACT. The diabetes mellitus is a metabolic disorder, characterized by the low or none insulin production (a hormone produced by the pancreas), as a result of the malfunctioning of the endocrine pancreas part or by an increasing resistance of the organism to this hormone. This implies that, after the digestive process, the food we consume is transformed into smaller chemical compounds, through the exocrine tissues. The absence or limited effectiveness of this polypeptide hormone, does not allow to metabolize the ingested carbohydrates provoking two consequences: Increase of the glucose concentration in blood, as the cells are unable to metabolize it; fatty acid intake through the liver, releasing ketone bodies to provide energy to the cells. This situation exposes the chronic patient to high blood glucose levels, named hyperglycemia, which may cause in the medium or long term multiple medical problems: ophthalmological, renal, cardiovascular, cerebrum-vascular, neurological … The diabetes represents a great public health problem and is the most common disease in the developed countries, by several factors such as the obesity or sedentary life, which facilitate the appearance of this disease. Through this project we will work with clinical experimentation data of patients with diabetes of type 1, autoimmune disease in which beta cells of the pancreas (producers of insulin) are destroyed resulting necessary the exogenous insulin administration. That said, the patient with diabetes type 1 will have to follow a treatment with insulin, administered by the subcutaneous route, adapted to his metabolic needs and to his life habits. To deal with this situation of metabolic control regulation of the patient, through an insulin therapy, we shall be using the “Endocrine Artificial Pancreas " (PEA), which consists of a bomb of insulin infusion, a constant glucose sensor, and a control algorithm in closed bow. The principal aim of the PEA is providing the patient precision, efficiency and safety regarding the normalization of the glycemic control and hypoglycemia risk reduction". The PEA establishes through subcutaneous route, consequently, the delay introduced by the insulin action, the delay of the glucose measure, as well as the mistakes introduced by the constant glucose sensors when, decalibrate, impede the employment of an algorithm of control. At this stage we must shape the patient glucose levels through predictive systems. A model is all that element or set of elements which will allow us to predict the behavior of a system by introducing input variables. Thus what we obtain, is a prediction of the future stages in which it is possible to find the patient glucose level, being served of input insulin, ingestion and glucose variables already known, for being the ones happened previously in the time. When we use the glucose predictor, using obtained real time parameters, the controller is capable of indicating the future level of the glucose for the decision capture CL controller. The predictors that are being used nowadays in the PEA are not working correctly for the amount of information and variables that it need to handle. Data Mining, also indexed as Knowledge Discovery in Databases or KDD, has been defined as the not trivial extraction process of implicit information, previously unknown and potentially useful. All this, using the following phases of the knowledge extraction process: selection of information, pre- processing, transformation, data mining, results interpretation, evaluation and knowledge acquisition. With all this process we seek to generate the unique insulin glucose model that adjusts individually and in a personalized way for each patient form and being capable, at the same time, of predicting the future conditions with real time calculations, across few input parameters. This project of end of grade seeks to extract the information contained in a database of type 1 diabetics patients, obtained from clinical experimentation. For it, we will use technologies of Data Mining. For the attainment of the aim implicit to this project we have proceeded to implement a graphical interface that will guide us across the process of the KDD (with graphical and statistical information) of every point of the process. Regarding the data mining part, we have been served by a tool called WEKA's tool called, in which across Java, we control all of its functions to implement them by means of the created program. Finally granting a higher potential to the project with the possibility of implementing the service for Android devices, porting the code. Through these devices and what has been exposed in the project they might help or even create new and very useful applications for this field. As a conclusion of the project, and after an exhaustive analysis of the obtained results, we can show how we achieve to obtain the insulin–glucose model for each patient.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La Diabetes mellitus es una enfermedad caracterizada por la insuficiente o nula producción de insulina por parte del páncreas o la reducida sensibilidad del organismo a esta hormona, que ayuda a que la glucosa llegue a los tejidos y al sistema nervioso para suministrar energía. La Diabetes tiene una mayor prevalencia en los países desarrollados debido a múltiples factores, entre ellos la obesidad, la vida sedentaria, y disfunciones en el sistema endocrino relacionadas con el páncreas. La Diabetes Tipo 1 es una enfermedad crónica e incurable, en la que son destruidas las células beta del páncreas, que producen la insulina, haciéndose necesaria la administración de insulina de forma exógena para controlar los niveles de glucosa en sangre. El paciente debe seguir una terapia con insulina administrada por vía subcutánea, que debe estar adaptada a sus necesidades metabólicas y a sus hábitos de vida. Esta terapia intenta imitar el perfil insulínico de un páncreas sano. La tecnología actual permite abordar el desarrollo del denominado “páncreas endocrino artificial” (PEA), que aportaría precisión, eficacia y seguridad en la aplicación de las terapias con insulina y permitiría una mayor independencia de los pacientes frente a su enfermedad, que en la actualidad están sujetos a una constante toma de decisiones. El PEA consta de un sensor continuo de glucosa, una bomba de infusión de insulina y un algoritmo de control, que calcula la insulina a infusionar utilizando los niveles de glucosa del paciente como información principal. Este trabajo presenta una modificación en el método de control en lazo cerrado propuesto en un proyecto previo. El controlador del que se parte está compuesto por un controlador basal booleano y un controlador borroso postprandial basado en reglas borrosas heredadas del controlador basal. El controlador postprandial administra el 50% del bolo manual (calculado a partir de la cantidad de carbohidratos que el paciente va a consumir) en el instante del aviso de la ingesta y reparte el resto en instantes posteriores. El objetivo es conseguir una regulación óptima del nivel de glucosa en el periodo postprandial. Con el objetivo de reducir las hiperglucemias que se producen en el periodo postprandial se realiza un transporte de insulina, que es un adelanto de la insulina basal del periodo postprandial que se suministrará junto con un porcentaje variable del bolo manual. Este porcentaje estará relacionado con el estado metabólico del paciente previo a la ingesta. Además se modificará la base de conocimiento para adecuar el comportamiento del controlador al periodo postprandial. Este proyecto está enfocado en la mejora del controlador borroso postprandial previo, modificando dos aspectos: la inferencia del controlador postprandial y añadiendo una toma de decisiones automática sobre el % del bolo manual y el transporte. Se ha propuesto un controlador borroso con una nueva inferencia, que no hereda las características del controlado basal, y ha sido adaptado al periodo postprandial. Se ha añadido una inferencia borrosa que modifica la cantidad de insulina a administrar en el momento del aviso de ingesta y la cantidad de insulina basal a transportar del periodo postprandial al bolo manual. La validación del algoritmo se ha realizado mediante experimentos en simulación utilizando una población de diez pacientes sintéticos pertenecientes al Simulador de Padua/Virginia, evaluando los resultados con estadísticos para después compararlos con los obtenidos con el método de control anterior. Tras la evaluación de los resultados se puede concluir que el nuevo controlador postprandial, acompañado de la toma de decisiones automática, realiza un mejor control glucémico en el periodo postprandial, disminuyendo los niveles de las hiperglucemias. ABSTRACT. Diabetes mellitus is a disease characterized by the insufficient or null production of insulin from the pancreas or by a reduced sensitivity to this hormone, which helps glucose get to the tissues and the nervous system to provide energy. Diabetes has more prevalence in developed countries due to multiple factors, including obesity, sedentary lifestyle and endocrine dysfunctions related to the pancreas. Type 1 Diabetes is a chronic, incurable disease in which beta cells in the pancreas that produce insulin are destroyed, and exogenous insulin delivery is required to control blood glucose levels. The patient must follow a therapy with insulin administered by the subcutaneous route that should be adjusted to the metabolic needs and lifestyle of the patient. This therapy tries to imitate the insulin profile of a non-pathological pancreas. Current technology can adress the development of the so-called “endocrine artificial pancreas” (EAP) that would provide accuracy, efficacy and safety in the application of insulin therapies and will allow patients a higher level of independence from their disease. Patients are currently tied to constant decision making. The EAP consists of a continuous glucose sensor, an insulin infusion pump and a control algorithm that computes the insulin amount that has to be infused using the glucose as the main source of information. This work shows modifications to the control method in closed loop proposed in a previous project. The reference controller is composed by a boolean basal controller and a postprandial rule-based fuzzy controller which inherits the rules from the basal controller. The postprandial controller administrates 50% of the bolus (calculated from the amount of carbohydrates that the patient is going to ingest) in the moment of the intake warning, and distributes the remaining in later instants. The goal is to achieve an optimum regulation of the glucose level in the postprandial period. In order to reduce hyperglycemia in the postprandial period an insulin transport is carried out. It consists on a feedforward of the basal insulin from the postprandial period, which will be administered with a variable percentage of the manual bolus. This percentage would be linked with the metabolic state of the patient in moments previous to the intake. Furthermore, the knowledge base is going to be modified in order to fit the controller performance to the postprandial period. This project is focused on the improvement of the previous controller, modifying two aspects: the postprandial controller inference, and the automatic decision making on the percentage of the manual bolus and the transport. A fuzzy controller with a new inference has been proposed and has been adapted to the postprandial period. A fuzzy inference has been added, which modifies both the amount of manual bolus to administrate at the intake warning and the amount of basal insulin to transport to the prandial bolus. The algorithm assessment has been done through simulation experiments using a synthetic population of 10 patients in the UVA/PADOVA simulator, evaluating the results with statistical parameters for further comparison with those obtained with the previous control method. After comparing results it can be concluded that the new postprandial controller, combined with the automatic decision making, carries out a better glycemic control in the postprandial period, decreasing levels of hyperglycemia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transgenic expression of the influenza virus hemagglutinin (HA) in the pancreatic islet β cells of InsHA mice leads to peripheral tolerance of HA-specific T cells. To examine the onset of tolerance, InsHA mice were immunized with influenza virus A/PR/8 at different ages, and the presence of nontolerant T cells was determined by the induction of autoimmune diabetes. The data revealed a neonatal period wherein T cells were not tolerant and influenza virus infection led to HA-specific β cell destruction and autoimmune diabetes. The ability to induce autoimmunity gradually waned, such that adult mice were profoundly tolerant to viral HA and were protected from diabetes. Because cross-presentation of islet antigens by professional antigen-presenting cells had been reported to induce peripheral tolerance, the temporal relationship between tolerance induction and activation of HA-specific T cells in the lymph nodes draining the pancreas was examined. In tolerant adult mice, but not in 1-week-old neonates, activation and proliferation of HA-specific CD8+ T cells occurred in the pancreatic lymph nodes. Thus, lack of tolerance in the perinatal period correlated with lack of activation of antigen-specific CD8+ T cells. This work provides evidence for the developmental regulation of peripheral tolerance induction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Substance P, acting via the neurokinin 1 receptor (NK1R), plays an important role in mediating a variety of inflammatory processes. However, its role in acute pancreatitis has not been previously described. We have found that, in normal mice, substance P levels in the pancreas and pancreatic acinar cell expression of NK1R are both increased during secretagogue-induced experimental pancreatitis. To evaluate the role of substance P, pancreatitis was induced in mice that genetically lack NK1R by administration of 12 hourly injections of a supramaximally stimulating dose of the secretagogue caerulein. During pancreatitis, the magnitude of hyperamylasemia, hyperlipasemia, neutrophil sequestration in the pancreas, and pancreatic acinar cell necrosis were significantly reduced in NK1R−/− mice when compared with wild-type NK1R+/+ animals. Similarly, pancreatitis-associated lung injury, as characterized by intrapulmonary sequestration of neutrophils and increased pulmonary microvascular permeability, was reduced in NK1R−/− animals. These effects of NK1R deletion indicate that substance P, acting via NK1R, plays an important proinflammatory role in regulating the severity of acute pancreatitis and pancreatitis-associated lung injury.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protease-activated receptors 1–3 (PAR1, PAR2, and PAR3) are members of a unique G protein-coupled receptor family. They are characterized by a tethered peptide ligand at the extracellular amino terminus that is generated by minor proteolysis. A partial cDNA sequence of a fourth member of this family (PAR4) was identified in an expressed sequence tag database, and the full-length cDNA clone has been isolated from a lymphoma Daudi cell cDNA library. The ORF codes for a seven transmembrane domain protein of 385 amino acids with 33% amino acid sequence identity with PAR1, PAR2, and PAR3. A putative protease cleavage site (Arg-47/Gly-48) was identified within the extracellular amino terminus. COS cells transiently transfected with PAR4 resulted in the formation of intracellular inositol triphosphate when treated with either thrombin or trypsin. A PAR4 mutant in which the Arg-47 was replaced with Ala did not respond to thrombin or trypsin. A hexapeptide (GYPGQV) representing the newly exposed tethered ligand from the amino terminus of PAR4 after proteolysis by thrombin activated COS cells transfected with either wild-type or the mutant PAR4. Northern blot showed that PAR4 mRNA was expressed in a number of human tissues, with high levels being present in lung, pancreas, thyroid, testis, and small intestine. By fluorescence in situ hybridization, the human PAR4 gene was mapped to chromosome 19p12.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two human cDNAs that encode novel vitamin K-dependent proteins have been cloned and sequenced. The predicted amino acid sequences suggest that both are single-pass transmembrane proteins with amino-terminal γ-carboxyglutamic acid-containing domains preceded by the typical propeptide sequences required for posttranslational γ-carboxylation of glutamic acid residues. The polypeptides, with deduced molecular masses of 23 and 17 kDa, are proline-rich within their putative cytoplasmic domains and contain several copies of the sequences PPXY and PXXP, motifs found in a variety of signaling and cytoskeletal proteins. Accordingly, these two proteins have been called proline-rich Gla proteins (PRGP1 and PRGP2). Unlike the γ-carboxyglutamic acid domain-containing proteins of the blood coagulation cascade, the two PRGPs are expressed in a variety of extrahepatic tissues, with PRGP1 and PRGP2 most abundantly expressed in the spinal cord and thyroid, respectively, among those tissues tested. Thus, these observations suggest a novel physiological role for these two new members of the vitamin K-dependent family of proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thyrotropin-releasing hormone (TRH) is a brain hypothalamic hormone that regulates thyrotropin (TSH) secretion from the anterior pituitary and is ubiquitously distributed throughout the brain and other tissues including pancreas. To facilitate studies into the role of endogenous TRH, we have used homologous recombination to generate mice that lack TRH. These TRH−/− mice are viable, fertile, and exhibit normal development. However, they showed obvious hypothyroidism with characteristic elevation of serum TSH level and diminished TSH biological activity. Their anterior pituitaries exhibited an apparent decrease in TSH immunopositive cells that was not due to hypothyroidism. Furthermore, this decrease could be reversed by TRH, but not thyroid hormone replacement, suggesting a direct involvement of TRH in the regulation of thyrotrophs. The TRH−/− mice also exhibited hyperglycemia, which was accompanied by impaired insulin secretion in response to glucose. These findings indicate that TRH−/− mice provide a model of exploiting tertiary hypothyroidism, and that TRH gene abnormalities cause disturbance of insulin secretion resulting in marked hyperglycemia.