967 resultados para Er3 -doped phosphate glass
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Glass samples with the composition (mol%) 80TeO(2)-10Nb(2)O(5)-5K(2)O-5Li(2)O, stable against crystallization, were prepared containing Yb3+, Tm3+ and Ho3+. The energy transfer and energy back transfer mechanisms in samples containing 5% Yb3+-5% Tm3+ and 5% Yb3+-5% Tm3+-0.5% Ho3+ were estimated by measuring the absorption and fluorescence spectra together with the time dependence of the Yb3+ F-2(5/2) excited state. A good fit for the luminescence time evolution was obtained with the Yokota-Tanimoto's diffusion-limited model. The up-conversion fluorescence was also studied in 5% Yb-5% Tm. 5% Yb-0.5% Ho and 5% Yb-5% Tm-0.5% Ho tellurite glasses under laser excitation at 975 nm. Strong emission was observed from (1)G(4) and F-3(2) Tm3+ energy levels in all samples. The S-5(2) Ho3+ emission was observed only in Yb3+Ho3+ samples being completely quenched in Yb3+/Tm3+/Tm3+ samples. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
In this work, a new organic-inorganic hybrid material has been synthesized by the incorporation of croconate ion into a calcium polyphosphate coacervate. The hybrid so obtained was characterized by means of electronic and vibrational spectroscopies. The material is a homogeneous mixture described by a structural model, which includes helical chains of polyphosphate ions, where the calcium ion occupies the internal vacancies of the structure. The croconate ion appears to be occupying the regions outside the polymeric structure, surrounded by several water molecules. The electronic spectrum of the incorporated material shows a broad band peaking at the same wavelength region (363 nm) observed for the aqueous solution of croconate ion, and manifesting the Jahn-Teller effect as evidenced by the doublet structure of the band. The infrared spectrum is widely dominated by the absorption bands of the polyphosphate ion and the appearance of the carbonyl stretching band at ca. 1550 cm(-1) indicates the presence of croconate ion incorporated in the structure. The Raman spectrum of the material shows several vibrational bands related to the oxocarbon moiety; most of them are shifted in comparison with the free ion. These shifts can be understood in terms of strong hydrogen bonding interactions between water molecules and the oxocarbon moiety. The low temperature methodology proposed here can be well used in the preparation of new phosphate glasses containing organic moieties opening the route to an entirely new class of hybrid glasses. (c) 2004 Elsevier B.V All rights reserved.
Resumo:
The effect of ytterbium ions upon energy transfer (ET) excited upconversion emission in Nd3+/Pr3+ -codoped PbGeO3-PbF2-CdF2 glass under 810 nm diode laser excitation is investigated. The results revealed that the presence of Yb3+ ions in the Nd3+/Pr3+-doped sample yields a fourfold enhancement in the visible and near infrared upconversion luminescence. The dependence of the upconversion process upon the excitation power, Nd3+, and Yb3+ concentrations is examined. The results indicated that ytterbium plays a major role in the ET upconversion process by bridging the 810nm neodymium excitation to praseodymium ions. The population of the Pr3+ ions P-3(0) emitting level was accomplished through a multi-ion interaction involving ground-state and excited-state absorption of pump photons at 810 nm by the Nd3+ followed by successive ET involving the Nd3+-Yb3+ and Yb3+-Pr3+ pairs. There is also direct ET Nd3+-Pr3+. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Tungstate fluorophosphate glasses of good optical quality were synthesized by fusion of the components and casting under air atmosphere. The absorption spectra from near-infrared to visible were obtained and the Judd-Ofelt parameters determined from the absorption bands. Transition probabilities, excited state lifetimes and transition branching ratios, were, determined from the measurements. Pumping with a 354.7 nm beam from a pulsed laser. resulted in emission at 450 nm. due to transition D-1(2)-->F-3(4) in Tm3+ ions and a broadband emission centered at approximate to 550 nm attributed to the glass matrix. When pumping at 650 nm, two emission bands at 450 nm (D-1(2)-->F-3(4)) and at 790 nm (H-3(4)-->H-3(6)) were observed. Excitation spectra were also obtained in order to understand the origin of both emissions. Theoretical and experimental lifetimes were determined and,the results were explained in terms of multiphonon relaxation. (C) 2003 American Institute of Physics.
Resumo:
Monolithic silica xerogels doped with different concentrations of Er3+, Yb3+ and Al3+ were prepared by sol-gel route. Densification was achieved by thermal treatment in air at 950degreesC for 120 h with a heating rate of 0.1degreesC/min. We studied the luminescence properties of the I-4(13/2)-->I-4(15/2) emission band of Er3+ as a function of the Al/Er/Yb concentration and we paid particular attention to the alumina effects. Raman spectroscopy and Vis-NIR absorption were used to monitor the degree of densification of the glasses and the residual OH content.
Resumo:
Modifications of glass surfaces were studied after exposure of samples to an atmosphere resulting from the decomposition of molten KNO3. The diffusion coefficient of K+ ions migrating into the surfaces of float glass and synthesized glasses doped with up to 5 wt% SnO2 was calculated by the Boltzmann-Matano technique. The Vickers hardness and the refractive index increase with exposure time. Infrared spectra show that the migration of K+ is responsible for an increase in the number of non-bridging oxygens in the exposed samples. The spectra of the synthesized glasses present evidences that their surfaces undergo crystallization during the exposure. All results lead to the conclusion that the presence of tin in the glasses hinders the diffusion of K+ ions, thus affecting the Vickers hardness, the refractive index and the infrared spectra. It is shown that the exposure method can be used as an alternative process to promote the K+ migration into glass surfaces. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The structural organization of Sb2O3-SbPO4 glasses has been studied by FTIR, Raman, P-31 MAS and spin echo NMR, Mossbauer and X-ray absorption spectroscopy (EXAFS and XANES at K and L-3,L-1-Sb edges). The combined results can be explained in terms of two potential mechanisms describing the change of the Sb(m) local environment upon incorporation of Q((4))-type phosphate. The formation of the latter species requires anionic compensation that may be adjusted by (a) formation of non bridging oxygen or (b) formation of SbO4E- groups (E = non-bonding electron pair). The second model is favored.
Resumo:
Erbium-activated silica-based planar waveguides were prepared by three different technological routes: RF-sputtering, sol-gel and ion exchange. Various parameters of preparation were varied in order to optimize the waveguides for operation in the NIR region. Particular attention was devoted to the minimization of the losses and the increase of the luminescence efficiency of the metastable I-4(13/2) state of the Er3+ ion. Waveguide properties were determined by m-line spectroscopy and loss measurements. Waveguide Raman and luminescence spectroscopy were used to obtain information about the structure of the prepared films and about the dynamical processes related to the luminescence of the Er3+ ions.
Resumo:
Cellulose-phosphate composite membranes have been prepared from bacterial cellulose membranes ( BC) and sodium polyphosphate solution. The structure and thermal behavior of the new composites were evaluated by X-ray diffraction (XRD), P-31-nuclear magnetic resonance (NMR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetry (TG) and thermomechanical analysis (TMA). From XRD analyses the I alpha and I beta cellulose crystalline phases were identified together with crystalline sodium phosphate that covers the cellulose microfibrils as revealed by SEM. P-31 NMR spectra show peaks assigned to Q(0) and Q(1) phosphate structures to be compared to the Q(2) units that characterize the precursor polyphosphate. Glass transition temperature, T-g, obtained from TMA curves and thermal stability obtained from TG and DSC measurements, were observed to be dependent on the phosphate content.
Resumo:
Transparent, flexible, and luminescent EU3+-doped siloxane-poly(ethylene glycol) (PEG) nanocomposites have been obtained by the sol-gel process. The inorganic (siloxane) and organic PEG phases are usually linked by weak bonds (hydrogen bonds or van der Waals forces), and small-angle X-ray scattering (SAXS) measurements suggest that the structure of these materials consists of fractal siloxane aggregates embedded in the PEG matrix. For low Eu3+ contents, n = 300 and n = 80, the aggregates are small and isolated and their fractal dimensions are 2.1 and 1.7, respectively. These values are close to those expected for gelation mechanisms consisting of reaction-limited cluster-cluster aggregation (RLCCA) and diffusion-limited cluster-cluster aggregation (DLCCA). For high Eu3+ content, SAYS results are consistent with a two-level structure: a primary level of siloxane aggregates and a second level, much larger, formed by the coalescence of the primary ones. The observed increase in the glass transition temperature for increasing Eu3+ content is consistent with the structural model derived from SAXS measurements. Extended X-ray absorption fine structure (EXAFS) and luminescence spectroscopy measurements indicate that under the experimental conditions utilized here Eu3+ ions do not strongly interact with the polymeric phase.
Resumo:
Diode-pumped Yb-doped glass lasers have received considerable attention for applications such as high-power beam production or femtosecond pulses generation. In this paper, we evaluate the laser potential of three different glass families doped with Yb3+ : alkali lead fluorborate (PbO-PbF2-B2O3), heavy metal oxide (Bi2O3-PbO-Ga2O3) and niobium tellurite (TeO2-Nb2O5-K2O-Li2O). Spectroscopic properties were studied for the samples and calculations of the minimum laser pump intensity (I-min), saturation fluence (U-sat) and the theoretical limit of peak power (P-max) are also presented. A comparison of laser properties of these three different glasses and their importance is shown and analyzed. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Germanate glasses are of interest for optoelectronic applications because they combine high mechanical strength, high chemical durability and temperature stability with a large transmission window (400 to 4500 nm) and high refractive index (2.0). GeO2-PbO-Bi2O3 glasses doped with Y-b(3+) were fabricated by melting powders in a crucible and then pouring them in a brass mold. Energy Dispersive Spectroscopy showed that the glass composition has a high spatial uniformity and that the Yb concentration in the solid sample is proportional to the Yb concentration in the melt, what was confirmed by absorption measurements. Intense blue emission at 507 nm was observed, corresponding to half of the wavelength of the near infrared region (NIR) emission; besides, a decay lifetime of 0.25 ms was measured and this corresponds to half of the decay lifetime in the infrared region; these are very strong indications of the presence of blue cooperative luminescence. Larger targets have been produced to be sputtered, resulting in thin films for three dimensional (3D) display and waveguide applications. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Sodium phosphoniobate glasses with the composition (mol%) 75NaPO(3)-25Nb(2)O(5) and containing 2 mol% Yb3+ and x mol% Er3+ (0.01 <= x <= 2) were prepared using the conventional melting/casting process. Er3+ emission at 1.5 mu m and infrared-to-visible upconversion emission, upon excitation at 976 nm, are evaluated as a function of the Er3+ concentration. For the lowest Er3+ content, 1.5 mu m emission quantum efficiency was 90%. Increasing the Er3+ concentration up to 2 mol%, the emission quantum efficiency was observed to decrease to 37% due to concentration quenching. The green and red upconversion emission intensity ratio was studied as a function of Yb3+ co-doping and the Er3+-Er3+ energy transfer processes. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Electrical properties of Er-doped SnO2 thin films obtained by sol-gel-dip-coating technique were measured. When compared to undoped tin dioxide, rare-earth doped films present much higher resistivity, indicating that Er3+ presents an acceptor-like character into the matrix, which leads to a high degree of electric charge compensation. Current-voltage characteristics, measured above room temperature for Er-doped films, lead to non-linear behavior and two conduction regimes. In the lower electric field range the conduction is dominated by Schottky emission over the grain boundary potential barrier, which presents an average value of 0.85 eV. Increasing the applied bias, a second regime of conduction is observed, since the Poole-Frenkel coulombic barrier lowering becomes a significant effect. The obtained activation energy for ionization is 0.67 eV. (C) 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.