780 resultados para Epoxy nanocomposites
Resumo:
In this work, cathodes employed in secondary lithium batteries are reviewed. These cathodes have great technologic and scientific importance, specifically, materials for cathodes as electronic conductor polymers (ECP), transition metal oxides (TMO) and nanocomposites of ECP/TMO. The use of a specific cathodic material is based in some intrinsic characteristics that improve the performance of the battery. Thus, some vantages and disvantages of these insertion compounds are discussed, as lithium insertion capacity, energy density, and the ciclability of these materials.
Resumo:
Five novel santalane-type sesquiterpenes were isolated from the stem bark of Duguetia glabriuscula - Annonaceae. Their structures have been established on the basis of spectral data and chemical evidences (¹H and 13C NMR, HMQC, HMBC) as (+)-alpha-santal-10-en-9-ol (1), (+)-alpha-santalan-10,11-epoxy-9-ol (2), alpha-santal-11-en-9,10-diol (3), (+)-alpha-santalan-9,10,11-triol (4), and (+)-alpha-santalan-9,11-epoxy-10-ol (5). Polycarpol, a triterpenoid, was also obtained.
Resumo:
In this work, composites formed from a mixture of V2O5 and polyaniline (PANI) were investigated, for applications as cathode materials for secondary lithium batteries. Electrochemical quartz crystal microbalance (EQCM) data show that charge compensation in the [PANI]0.3V2O5 nanocomposite is achieved predominantly by Li+ migration. However, the charge compensation in the [PANI]V2O5 microcomposite occurs by Li+ and ClO4- transport. Electrochemical Impedance Spectroscopy (EIS) measurements reveal several benefits of nanohybrid formation, including the achievement of shorter ionic diffusion pathways, the higher diffusion rate of the lithium ion and also the higher electronic conductivity, which are responsible for a synergetic effect of the energy storage properties.
Resumo:
Associating the well known advantages of hybrid materials to the wide potential of nanomaterials, the new and featuring class of polymer nanocomposites turned into one of the most intensively researched areas. This review highlights recent developments in the field of the synthesis of polymer based nanocomposites. Important issues related to the surface modification of fillers, in order to promote the compatibility between the inorganic/organic components, are also reported. The enhancement of the physical properties and the potential applications of polymer nanocomposites are considered in typical examples, given for each synthetic method described.
Resumo:
The construction and analytical evaluation of a coated graphite Al(III) ion-selective electrode, based on the ionic pair formed between the Al(F)n3-n anion and tricaprylylmethylammonium cation (Aliquat 336S) incorporated on a poly(vinylchloride) (PVC) matrix membrane are described. A thin membrane film of this ionic pair and dibutylphthalate (DBPh) in PVC was deposited directly on a cylindric graphite rod (2 cm length x 0.5 cm diameter) attached to the end of a glass tube using epoxy resin. The membrane solution was prepared by dissolving 40% (m/m) of PVC in 10 mL of tetrahydrofuran following addition of 45% (m/m) of DBPh and 15% (m/m) of the ionic pair. The effect of membrane composition, fluoride concentration, and several concomitants as potential interferences on the electrode response were investigated. The aluminium(III) ion-selective electrode showed a linear response ranging from 1.4 x 10-4 to 1.0 x 10-2 mol L-1, a detection limit of 4.0 x 10-5 mol L-1, aslope of -54.3±0.2mV dec-1 and a lifetime of more than 1 year (over 3000 determinations for each membrane). The slope indicates that the ion-selective electrode responds preferentially to the Al(F)4- species. Application of this electrode for the aluminium(III) determination in stomach anti-acid samples is reported.
Resumo:
Two new compounds, 5 and 8, and an epimeric mixture 4a/4b were isolated from hardwood of Auxemma glazioviana. Their structures and relative configurations were determined by modern spectroscopic analysis to be rel-10alpha,11alpha-epoxy-11beta-ethoxy-8alpha- hydroxy-2-methoxy -8abeta-methyl-5,6,7,8,8a,9,10,10abeta-octahydro-1,4-anthracenedione (or rel-2R,2aR,5R,5aS ,10bS,10cS-2-ethoxy-5-hydroxy-8-methoxy-5a-methyl- 2a,3,4,5,5a,6,10b,10c-octahydro-2H-anthra[9,1-bc]furan-7,10-dione, 4a), rel-10alpha,11alpha- epoxy-11alpha-ethoxy-8alpha-hydroxy-2-methoxy-8abeta-methyl-5,6,7,8,8a,9,10,10abeta-octahydro- 1,4-anthracenedione (or rel-2S,2aR,5R,5aS ,10bS,10cS-2-ethoxy-5-hydroxy-8-methoxy- 5a-methyl-2a,3,4,5,5a,6,10b10c-octahydro-2H-anthra[9,1-bc]furan-7,10-dione, 4b), rel-10alpha,11alpha-epoxy-8alpha,11-dihydroxy-2-methoxy-8abeta-methyl-5,6,7,8,8a,9,10,10abeta- octahydro-1,4-anthracenedione (or rel-2S,2aR,5R,5aS ,10bS,10cS-2,5-dihydroxy-8- methoxy-5a-methyl-2a,3,4,5,5a,6,10b,10c-octahydro-2H-anthra[9,1-bc]furan-7,10 -dione, 5) and rel-10,11-epoxy-8abeta-methyl-1,4,5alpha,9alpha-tetrahydroxy-5,6,7,8,8a,9,10,10a- octahydro-8-anthracenone (or rel-2aS,5aS,6R,10bR ,10c5-2a,6,7,10-tetrahydroxy-5a-methyl-2a,3,4,5,5a,6,10b,10c-octahydro-2H-anthra [9,1-bc]-furan-5-one, 8). In addition, known compounds were also isolated.
Resumo:
The construction and analytical evaluation of a coated graphite-epoxy electrode sensitive to the zinc-1,10-phenantroline complex based on the [Zn(fen)3][tetrakis(4-chlorophenyl)borate]2 incorporated into a poly(vinylchloride) (PVC) matrix are described. A thin membrane film of this ion-pair, dibutylphthalate (DBPh) and PVC were deposited directly onto an electrically conductive graphite-epoxy support located inside a Perspex® tube. The best PVC polymeric membrane contains 65% (m/m) DBPh, 30% (m/m) PVC and 5% (m/m) of the ion-pair. This electrode shows a response of 19.5 mV dec-1 over the zinc(II) concentration range of 1.0 x 10-5 to 1.0 x 10-3 mol L-1 in 1,10-phenantroline medium, at pH 6.0. The response time was less than 20 seconds and the lifetime of this electrode was more than four months (over 1200 determinations by each polymeric membrane). It was successfully used as an indicator electrode in the potentiometric precipitation titration of zinc(II) ions.
Resumo:
The potentialities of X-ray Absorption Near Edge Spectroscopy (XANES) of the N K edge (N K) obtained with the spherical grating monochromator beam line at the Brazilian National Synchrotron Light Laboratory are explored in the investigation of poly(aniline), nanocomposites and dyes. Through the analysis of N K XANES spectra of conducting polymers and many other dye compounds that are dominated by 1s®p* transitions, it was possible to correlate the band energy value with the nitrogen oxidation states. An extensive N K XANES spectral database was obtained, thus permitting the elucidation of the nature of different nitrogens present in the intercalated conducting polymers.
Resumo:
Se describe el efecto wrinkle observado por primera vez sobre moldes dentarios realizados con resinas epoxy y metalizados en oro para su observación mediante microscopía electrónica de barrido (SEM). Con el fin de determinar en qué medida puede afectar al análisis del patrón de microestriación vestibular, se analizan dos muestras dentales de tres especies de Hominoideos, una de ellas incluyendo moldes con presencia de"aguas" relacionadas con el proceso de metalización. Se observa un descenso marcado de la variabilidad del patrón de microestriación dentaria anque las diferencias entre las dos muestras por especie no son estadísticamente significativas. El efecto wrinkle reduce significativamente el porcentaje de clasificación correcta de las especies analizadas a partir del patrón de microestriación y rugosidad dental utilizando un Análisis Discriminante. Se aconseja evitar la inclusión de las muestras afectadas por aguas en los estudios del patrón de microestriación dentaria.
Resumo:
A composite electrode prepared by mixing a commercial epoxy resin Araldite® and graphite powder is proposed to be used in didactic experiments. The electrode is prepared by the students and applied in simple experiments to demonstrate the effect of the composite composition on the conductivity and the voltammetric response of the resulting electrode, as well as the response in relation to the scan rate dependence on mass transport. The possibility of using the composite electrode in quantitative analysis is also demonstrated.
Resumo:
From the trunk bark of Nectandra megapotamica (Lauraceae) four phenylpropanoids, elemicin, isoelemicin, (±)-erythro-1-(3,4,5-trimethoxyphenyl)-1,2-propanediol and (±)-threo-1-(3,4,5-trimetoxyphenyl)-1,2-propanediol have been isolated, in addition to 3,4,5-trimethoxybenzoic acid, (-)-epicatechin and trans-1(10)-epoxy-4(15)-caryophyllene. The diastereoisomeric erythro- and threo- phenylpropanoids are being reported for the first time in a plant taxon as well as the occurrence of the other compounds in Nectandra. The structures of the isolated compounds have been established on the basis of 1D and 2D NMR spectroscopic techniques. Their in vitro antifungal activities against standard strains of Candida albicans, C. krusei, C. tropicalis and Cryptococcus neoformans and antioxidant properties were also evaluated in this work.
Resumo:
The natural rubber is a strategic material which can not be replaced by synthetic rubber in many technological applications. Brazil is a rubber importer, but new techniques of cultivation, breeding and diversification of producing species can reverse this situation. One of the best ways to add value to this commodity is nanotechnology. The production of nanocomposites is already a reality and shows that the sustainable use of this natural resource can lead to new products and boost the national agribusiness setting labor-qualified in the field.
Resumo:
Bisphenol A (BPA) is a monomer used in epoxy resin and polycarbonate manufacture. This molecule is considered as an endocrine disruptor that causes different diseases. The human exposition to this non biodegrable substance is increasing in the time; in particular, water is contaminated by industrial remainder flow. In this article heterogeneous photo degradation of a solution of BPA in water solution using a catalytic photo reactor with UV light and titanium dioxide (TiO2) was evaluated. High performance liquid chromatography (HPLC) was used to analyze the photo degradation of BPA solutions. The influence of titanium dioxide amount, BPA concentration, reaction temperature and the catalyst state like suspension and immobilized were also determinated. The highest elimination of BPA was 83.2%, in 240 min, beginning with 0.05 mM of BPA and 100 mg/L of TiO2 in suspension.
Resumo:
In recent years nanomaterials, such as metallic nanoparticles, nanowires, nanotapes, nanotubes and nanocomposites, have attracted increasing interest for several technological applications. In catalysis, the great potential of nanomaterials is related to the high catalytic activity exhibited by these materials as a function of the high surface/volume ratio when the particles acquire diameter below 5 nm. In this work, a review about concepts and background of nanoscience and nanotechnology is presented with emphasis in catalysis. Special attention is given to gold nanoparticles and carbon nanotubes, focusing the properties and characteristics of these materials in several catalytic reactions.
Resumo:
The chemical composition of two specimens of Esenbeckia grandiflora, collected in the south and northeast regions of Brazil, was investigated. In this study, three β-indolopyridoquinazoline alkaloids from the leaves (rutaecarpine, 1-hydroxyrutaecarpine) and roots (euxylophoricine D) were isolated for the first time in this genus. In addition, the triterpenes α-amyrin, β-amyrin, α-amyrenonol, β-amyrenonol, 3α-hydroxy-ursan-12-one, and 3α-hydroxy-12,13-epoxy-oleanane, the coumarins auraptene, umbelliferone, pimpinelin, and xanthotoxin, the furoquinoline alkaloids delbine and kokusaginine, and the phytosteroids sitosterol, stigmasterol, campesterol and 3β-O-β-D-glucopyranosylsitosterol were also isolated from the leaves, twigs, roots and stems of this species. Structures of these compounds were established by spectral analysis.