966 resultados para Environmental monitoring Remote sensing
Resumo:
To supplement other environmental monitoring programs and to protect the health of people consuming fish from waters within this state, the state of Iowa conducts fish tissue monitoring. Since 1980, the Iowa Department of Natural Resources (IDNR), the United States Environmental Protection Agency Region VII (U.S. EPA), and the University of Iowa Hygienic Laboratory (UHL) have cooperatively conducted annual statewide collections and analyses of fish for toxic contaminants. Beginning in 1983, this monitoring effort became the Regional Ambient Fish Tissue Monitoring Program (the RAFT program). Currently, the RAFT program is the only statewide fish contaminant-monitoring program in Iowa. Historically, the data generated from the RAFT program have enabled IDNR to document temporal changes in contaminant levels and to identify Iowa lakes and rivers where high levels of contaminants in fish potentially threaten the health of fish consuming Iowans. The Iowa RAFT monitoring program incorporates three different but equally important types of monitoring sites: 1) status, 2) trend, and 3) follow-up.
Resumo:
To supplement other environmental monitoring programs and to protect the health of people consuming fish from waters within this state, the state of Iowa conducts fish tissue monitoring. Since 1980, the Iowa Department of Natural Resources (IDNR), the United States Environmental Protection Agency Region VII (U.S. EPA), and the University of Iowa Hygienic Laboratory (UHL) have cooperatively conducted annual statewide collections and analyses of fish for toxic contaminants. Beginning in 1983, this monitoring effort became the Regional Ambient Fish Tissue Monitoring Program (the RAFT program). Currently, the RAFT program is the only statewide fish contaminant-monitoring program in Iowa. Historically, the data generated from the RAFT program have enabled IDNR to document temporal changes in contaminant levels and to identify Iowa lakes and rivers where high levels of contaminants in fish potentially threaten the health of fish consuming Iowans.
Resumo:
In 1903, more than 30 million m3 of rock fell from the east slopes of Turtle Mountain in Alberta, Canada, causing a rock avalanche that killed about 70 people in the town of Frank. The Alberta Government, in response to continuing instabilities at the crest of the mountain, established a sophisticated field laboratory where state-of-the-art monitoring techniques have been installed and tested as part of an early-warning system. In this chapter, we provide an overview of the causes, trigger, and extreme mobility of the landslide. We then present new data relevant to the characterization and detection of the present-day instabilities on Turtle Mountain. Fourteen potential instabilities have been identified through field mapping and remote sensing. Lastly, we provide a detailed review of the different in-situ and remote monitoring systems that have been installed on the mountain. The implications of the new data for the future stability of Turtle Mountain and related landslide runout, and for monitoring strategies and risk management, are discussed.
Resumo:
Characterizing the geological features and structures in three dimensions over inaccessible rock cliffs is needed to assess natural hazards such as rockfalls and rockslides and also to perform investigations aimed at mapping geological contacts and building stratigraphy and fold models. Indeed, the detailed 3D data, such as LiDAR point clouds, allow to study accurately the hazard processes and the structure of geologic features, in particular in vertical and overhanging rock slopes. Thus, 3D geological models have a great potential of being applied to a wide range of geological investigations both in research and applied geology projects, such as mines, tunnels and reservoirs. Recent development of ground-based remote sensing techniques (LiDAR, photogrammetry and multispectral / hyperspectral images) are revolutionizing the acquisition of morphological and geological information. As a consequence, there is a great potential for improving the modeling of geological bodies as well as failure mechanisms and stability conditions by integrating detailed remote data. During the past ten years several large rockfall events occurred along important transportation corridors where millions of people travel every year (Switzerland: Gotthard motorway and railway; Canada: Sea to sky highway between Vancouver and Whistler). These events show that there is still a lack of knowledge concerning the detection of potential rockfalls, making mountain residential settlements and roads highly risky. It is necessary to understand the main factors that destabilize rocky outcrops even if inventories are lacking and if no clear morphological evidences of rockfall activity are observed. In order to increase the possibilities of forecasting potential future landslides, it is crucial to understand the evolution of rock slope stability. Defining the areas theoretically most prone to rockfalls can be particularly useful to simulate trajectory profiles and to generate hazard maps, which are the basis for land use planning in mountainous regions. The most important questions to address in order to assess rockfall hazard are: Where are the most probable sources for future rockfalls located? What are the frequencies of occurrence of these rockfalls? I characterized the fracturing patterns in the field and with LiDAR point clouds. Afterwards, I developed a model to compute the failure mechanisms on terrestrial point clouds in order to assess the susceptibility to rockfalls at the cliff scale. Similar procedures were already available to evaluate the susceptibility to rockfalls based on aerial digital elevation models. This new model gives the possibility to detect the most susceptible rockfall sources with unprecented detail in the vertical and overhanging areas. The results of the computation of the most probable rockfall source areas in granitic cliffs of Yosemite Valley and Mont-Blanc massif were then compared to the inventoried rockfall events to validate the calculation methods. Yosemite Valley was chosen as a test area because it has a particularly strong rockfall activity (about one rockfall every week) which leads to a high rockfall hazard. The west face of the Dru was also chosen for the relevant rockfall activity and especially because it was affected by some of the largest rockfalls that occurred in the Alps during the last 10 years. Moreover, both areas were suitable because of their huge vertical and overhanging cliffs that are difficult to study with classical methods. Limit equilibrium models have been applied to several case studies to evaluate the effects of different parameters on the stability of rockslope areas. The impact of the degradation of rockbridges on the stability of large compartments in the west face of the Dru was assessed using finite element modeling. In particular I conducted a back-analysis of the large rockfall event of 2005 (265'000 m3) by integrating field observations of joint conditions, characteristics of fracturing pattern and results of geomechanical tests on the intact rock. These analyses improved our understanding of the factors that influence the stability of rock compartments and were used to define the most probable future rockfall volumes at the Dru. Terrestrial laser scanning point clouds were also successfully employed to perform geological mapping in 3D, using the intensity of the backscattered signal. Another technique to obtain vertical geological maps is combining triangulated TLS mesh with 2D geological maps. At El Capitan (Yosemite Valley) we built a georeferenced vertical map of the main plutonio rocks that was used to investigate the reasons for preferential rockwall retreat rate. Additional efforts to characterize the erosion rate were made at Monte Generoso (Ticino, southern Switzerland) where I attempted to improve the estimation of long term erosion by taking into account also the volumes of the unstable rock compartments. Eventually, the following points summarize the main out puts of my research: The new model to compute the failure mechanisms and the rockfall susceptibility with 3D point clouds allows to define accurately the most probable rockfall source areas at the cliff scale. The analysis of the rockbridges at the Dru shows the potential of integrating detailed measurements of the fractures in geomechanical models of rockmass stability. The correction of the LiDAR intensity signal gives the possibility to classify a point cloud according to the rock type and then use this information to model complex geologic structures. The integration of these results, on rockmass fracturing and composition, with existing methods can improve rockfall hazard assessments and enhance the interpretation of the evolution of steep rockslopes. -- La caractérisation de la géologie en 3D pour des parois rocheuses inaccessibles est une étape nécessaire pour évaluer les dangers naturels tels que chutes de blocs et glissements rocheux, mais aussi pour réaliser des modèles stratigraphiques ou de structures plissées. Les modèles géologiques 3D ont un grand potentiel pour être appliqués dans une vaste gamme de travaux géologiques dans le domaine de la recherche, mais aussi dans des projets appliqués comme les mines, les tunnels ou les réservoirs. Les développements récents des outils de télédétection terrestre (LiDAR, photogrammétrie et imagerie multispectrale / hyperspectrale) sont en train de révolutionner l'acquisition d'informations géomorphologiques et géologiques. Par conséquence, il y a un grand potentiel d'amélioration pour la modélisation d'objets géologiques, ainsi que des mécanismes de rupture et des conditions de stabilité, en intégrant des données détaillées acquises à distance. Pour augmenter les possibilités de prévoir les éboulements futurs, il est fondamental de comprendre l'évolution actuelle de la stabilité des parois rocheuses. Définir les zones qui sont théoriquement plus propices aux chutes de blocs peut être très utile pour simuler les trajectoires de propagation des blocs et pour réaliser des cartes de danger, qui constituent la base de l'aménagement du territoire dans les régions de montagne. Les questions plus importantes à résoudre pour estimer le danger de chutes de blocs sont : Où se situent les sources plus probables pour les chutes de blocs et éboulement futurs ? Avec quelle fréquence vont se produire ces événements ? Donc, j'ai caractérisé les réseaux de fractures sur le terrain et avec des nuages de points LiDAR. Ensuite, j'ai développé un modèle pour calculer les mécanismes de rupture directement sur les nuages de points pour pouvoir évaluer la susceptibilité au déclenchement de chutes de blocs à l'échelle de la paroi. Les zones sources de chutes de blocs les plus probables dans les parois granitiques de la vallée de Yosemite et du massif du Mont-Blanc ont été calculées et ensuite comparés aux inventaires des événements pour vérifier les méthodes. Des modèles d'équilibre limite ont été appliqués à plusieurs cas d'études pour évaluer les effets de différents paramètres sur la stabilité des parois. L'impact de la dégradation des ponts rocheux sur la stabilité de grands compartiments de roche dans la paroi ouest du Petit Dru a été évalué en utilisant la modélisation par éléments finis. En particulier j'ai analysé le grand éboulement de 2005 (265'000 m3), qui a emporté l'entier du pilier sud-ouest. Dans le modèle j'ai intégré des observations des conditions des joints, les caractéristiques du réseau de fractures et les résultats de tests géoméchaniques sur la roche intacte. Ces analyses ont amélioré l'estimation des paramètres qui influencent la stabilité des compartiments rocheux et ont servi pour définir des volumes probables pour des éboulements futurs. Les nuages de points obtenus avec le scanner laser terrestre ont été utilisés avec succès aussi pour produire des cartes géologiques en 3D, en utilisant l'intensité du signal réfléchi. Une autre technique pour obtenir des cartes géologiques des zones verticales consiste à combiner un maillage LiDAR avec une carte géologique en 2D. A El Capitan (Yosemite Valley) nous avons pu géoréferencer une carte verticale des principales roches plutoniques que j'ai utilisé ensuite pour étudier les raisons d'une érosion préférentielle de certaines zones de la paroi. D'autres efforts pour quantifier le taux d'érosion ont été effectués au Monte Generoso (Ticino, Suisse) où j'ai essayé d'améliorer l'estimation de l'érosion au long terme en prenant en compte les volumes des compartiments rocheux instables. L'intégration de ces résultats, sur la fracturation et la composition de l'amas rocheux, avec les méthodes existantes permet d'améliorer la prise en compte de l'aléa chute de pierres et éboulements et augmente les possibilités d'interprétation de l'évolution des parois rocheuses.
Resumo:
This book is one out of 8 IAEG XII Congress volumes, and deals with Landslide processes, including: field data and monitoring techniques, prediction and forecasting of landslide occurrence, regional landslide inventories and dating studies, modeling of slope instabilities and secondary hazards (e.g. impulse waves and landslide-induced tsunamis, landslide dam failures and breaching), hazard and risk assessment, earthquake and rainfall induced landslides, instabilities of volcanic edifices, remedial works and mitigation measures, development of innovative stabilization techniques and applicability to specific engineering geological conditions, use of geophysical techniques for landslide characterization and investigation of triggering mechanisms. Focuses is given to innovative techniques, well documented case studies in different environments, critical components of engineering geological and geotechnical investigations, hydrological and hydrogeological investigations, remote sensing and geophysical techniques, modeling of triggering, collapse, runout and landslide reactivation, geotechnical design and construction procedures in landslide zones, interaction of landslides with structures and infrastructures and possibility of domino effects. The Engineering Geology for Society and Territory volumes of the IAEG XII Congress held in Torino from September 15-19, 2014, analyze the dynamic role of engineering geology in our changing world and build on the four main themes of the congress: environment, processes, issues, and approaches.
Resumo:
This thesis develops a comprehensive and a flexible statistical framework for the analysis and detection of space, time and space-time clusters of environmental point data. The developed clustering methods were applied in both simulated datasets and real-world environmental phenomena; however, only the cases of forest fires in Canton of Ticino (Switzerland) and in Portugal are expounded in this document. Normally, environmental phenomena can be modelled as stochastic point processes where each event, e.g. the forest fire ignition point, is characterised by its spatial location and occurrence in time. Additionally, information such as burned area, ignition causes, landuse, topographic, climatic and meteorological features, etc., can also be used to characterise the studied phenomenon. Thereby, the space-time pattern characterisa- tion represents a powerful tool to understand the distribution and behaviour of the events and their correlation with underlying processes, for instance, socio-economic, environmental and meteorological factors. Consequently, we propose a methodology based on the adaptation and application of statistical and fractal point process measures for both global (e.g. the Morisita Index, the Box-counting fractal method, the multifractal formalism and the Ripley's K-function) and local (e.g. Scan Statistics) analysis. Many measures describing the space-time distribution of environmental phenomena have been proposed in a wide variety of disciplines; nevertheless, most of these measures are of global character and do not consider complex spatial constraints, high variability and multivariate nature of the events. Therefore, we proposed an statistical framework that takes into account the complexities of the geographical space, where phenomena take place, by introducing the Validity Domain concept and carrying out clustering analyses in data with different constrained geographical spaces, hence, assessing the relative degree of clustering of the real distribution. Moreover, exclusively to the forest fire case, this research proposes two new methodologies to defining and mapping both the Wildland-Urban Interface (WUI) described as the interaction zone between burnable vegetation and anthropogenic infrastructures, and the prediction of fire ignition susceptibility. In this regard, the main objective of this Thesis was to carry out a basic statistical/- geospatial research with a strong application part to analyse and to describe complex phenomena as well as to overcome unsolved methodological problems in the characterisation of space-time patterns, in particular, the forest fire occurrences. Thus, this Thesis provides a response to the increasing demand for both environmental monitoring and management tools for the assessment of natural and anthropogenic hazards and risks, sustainable development, retrospective success analysis, etc. The major contributions of this work were presented at national and international conferences and published in 5 scientific journals. National and international collaborations were also established and successfully accomplished. -- Cette thèse développe une méthodologie statistique complète et flexible pour l'analyse et la détection des structures spatiales, temporelles et spatio-temporelles de données environnementales représentées comme de semis de points. Les méthodes ici développées ont été appliquées aux jeux de données simulées autant qu'A des phénomènes environnementaux réels; nonobstant, seulement le cas des feux forestiers dans le Canton du Tessin (la Suisse) et celui de Portugal sont expliqués dans ce document. Normalement, les phénomènes environnementaux peuvent être modélisés comme des processus ponctuels stochastiques ou chaque événement, par ex. les point d'ignition des feux forestiers, est déterminé par son emplacement spatial et son occurrence dans le temps. De plus, des informations tels que la surface bru^lée, les causes d'ignition, l'utilisation du sol, les caractéristiques topographiques, climatiques et météorologiques, etc., peuvent aussi être utilisées pour caractériser le phénomène étudié. Par conséquent, la définition de la structure spatio-temporelle représente un outil puissant pour compren- dre la distribution du phénomène et sa corrélation avec des processus sous-jacents tels que les facteurs socio-économiques, environnementaux et météorologiques. De ce fait, nous proposons une méthodologie basée sur l'adaptation et l'application de mesures statistiques et fractales des processus ponctuels d'analyse global (par ex. l'indice de Morisita, la dimension fractale par comptage de boîtes, le formalisme multifractal et la fonction K de Ripley) et local (par ex. la statistique de scan). Des nombreuses mesures décrivant les structures spatio-temporelles de phénomènes environnementaux peuvent être trouvées dans la littérature. Néanmoins, la plupart de ces mesures sont de caractère global et ne considèrent pas de contraintes spatiales com- plexes, ainsi que la haute variabilité et la nature multivariée des événements. A cet effet, la méthodologie ici proposée prend en compte les complexités de l'espace géographique ou le phénomène a lieu, à travers de l'introduction du concept de Domaine de Validité et l'application des mesures d'analyse spatiale dans des données en présentant différentes contraintes géographiques. Cela permet l'évaluation du degré relatif d'agrégation spatiale/temporelle des structures du phénomène observé. En plus, exclusif au cas de feux forestiers, cette recherche propose aussi deux nouvelles méthodologies pour la définition et la cartographie des zones périurbaines, décrites comme des espaces anthropogéniques à proximité de la végétation sauvage ou de la forêt, et de la prédiction de la susceptibilité à l'ignition de feu. A cet égard, l'objectif principal de cette Thèse a été d'effectuer une recherche statistique/géospatiale avec une forte application dans des cas réels, pour analyser et décrire des phénomènes environnementaux complexes aussi bien que surmonter des problèmes méthodologiques non résolus relatifs à la caractérisation des structures spatio-temporelles, particulièrement, celles des occurrences de feux forestières. Ainsi, cette Thèse fournit une réponse à la demande croissante de la gestion et du monitoring environnemental pour le déploiement d'outils d'évaluation des risques et des dangers naturels et anthro- pogéniques. Les majeures contributions de ce travail ont été présentées aux conférences nationales et internationales, et ont été aussi publiées dans 5 revues internationales avec comité de lecture. Des collaborations nationales et internationales ont été aussi établies et accomplies avec succès.
Resumo:
The search for low subjectivity area estimates has increased the use of remote sensing for agricultural monitoring and crop yield prediction, leading to more flexibility in data acquisition and lower costs comparing to traditional methods such as census and surveys. Low spatial resolution satellite images with higher frequency in image acquisition have shown to be adequate for cropland mapping and monitoring in large areas. The main goal of this study was to map the Summer crops in the State of Paraná, Brazil, using 10-day composition of NDVI SPOT Vegetation data for 2005/2006, 2006/2007 and 2007/2008 cropping seasons. For this, a supervised digital classification method with Parallelepiped algorithm in multitemporal RGB image composites was used, in order to generate masks of Summer cultures for each 10-day composition. Accuracy assessment was performed using Kappa index, overall accuracy and Willmott's concordance index, resulting in good levels of accuracy. This methodology allowed the accomplishment, with free and low resolution data, of the mapping of Summer cultures at State level.
Resumo:
This study aimed at identifying different conditions of coffee plants after harvesting period, using data mining and spectral behavior profiles from Hyperion/EO1 sensor. The Hyperion image, with spatial resolution of 30 m, was acquired in August 28th, 2008, at the end of the coffee harvest season in the studied area. For pre-processing imaging, atmospheric and signal/noise effect corrections were carried out using Flaash and MNF (Minimum Noise Fraction Transform) algorithms, respectively. Spectral behavior profiles (38) of different coffee varieties were generated from 150 Hyperion bands. The spectral behavior profiles were analyzed by Expectation-Maximization (EM) algorithm considering 2; 3; 4 and 5 clusters. T-test with 5% of significance was used to verify the similarity among the wavelength cluster means. The results demonstrated that it is possible to separate five different clusters, which were comprised by different coffee crop conditions making possible to improve future intervention actions.
Resumo:
The soybean is important to the economy of Brazil, so the estimation of the planted area and the production with higher antecedence and reliability becomes essential. Techniques related to Remote Sensing may help to obtain this information at lower cost and less subjectivity in relation to traditional surveys. The aim of this study is to estimate the planted area with soybean culture in the crop of 2008/2009 in cities in the west of the state of Paraná, in Brazil, based on the spectral dynamics of the culture and through the use of the specific system of analysis for images of Landsat 5/TM satellite. The obtained results were satisfactory, because the classification supervised by Maximum Verisimilitude - MaxVer along with the techniques of the specific system of analysis for satellite images has allowed an estimate of soybean planted area (soybean mask), obtaining values of the metrics of Global Accuracy with an average of 79.05% and Kappa Index over 63.50% in all cities. The monitoring of a reference area was of great importance for determining the vegetative phase in which the culture is more different from the other targets, facilitating the choice of training samples (ROIs) and avoiding misclassifications.
Resumo:
This study aimed to propose methods to identify croplands cultivated with winter cereals in the northern region of Rio Grande do Sul State, Brazil. Thus, temporal profiles of Normalized Difference Vegetation Index (NDVI) from MODIS sensor, from April to December of the 2000 to 2008, were analyzed. Firstly, crop masks were elaborated by subtracting the minimum NDVI image (April to May) from the maximum NDVI image (June to October). Then, an unsupervised classification of NDVI images was carried out (Isodata), considering the crop mask areas. According to the results, crop masks allowed the identification of pixels with greatest green biomass variation. This variation might be associated or not with winter cereals areas established to grain production. The unsupervised classification generated classes in which NDVI temporal profiles were associated with water bodies, pastures, winter cereals for grain production and for soil cover. Temporal NDVI profiles of the class winter cereals for grain production were in agree with crop patterns in the region (developmental stage, management standard and sowing dates). Therefore, unsupervised classification based on crop masks allows distinguishing and monitoring winter cereal crops, which were similar in terms of morphology and phenology.
Resumo:
Coffee production was closely linked to the economic development of Brazil and, even today, coffee is an important product of the national agriculture. The State of Minas Gerais currently accounts for 52% of the whole coffee area in Brazil. Remote sensing data can provide information for monitoring and mapping of coffee crops, faster and cheaper than conventional methods. In this context, the objective of this study was to assess the effectiveness of coffee crop mapping in Monte Santo de Minas municipality, Minas Gerais State, Brazil, from fraction images derived from MODIS data, in both dry and rainy seasons. The Spectral Linear Mixing Model was used to derive fraction images of soil, coffee, and water/shade. These fraction images served as input data for the supervised automatic classification using the SVM - Support Vector Machine approach. The best results concerning Overall Accuracy and Kappa Index were obtained in the classification of the dry season, with 67% and 0.41, respectively.
Resumo:
Vad händer i tidvattenzonen? Var går gränsen mellan land och hav, vad händer i tidvattenzonen och vem ansvarar för detta? I västra Indiska oceanen (VIO) kan avståndet mellan den lägsta nivån för lågvattnet och den högsta nivån för högvattnet vara flera kilometer och nivåskillnaderna upp till 6 meter och detta skapar ett stort och föränderligt område. Syftet med min avhandling är att öka förståelsen för tidvattenzonen i tropiska och subtropiska västra Indiska oceanen. Sammanfattningsvis visar mina studier att det finns ett mycket stort värde i den komplexa tidvattenzonen, men också att det här området hotas från både land och hav, genom t.ex. överexploatering, erosion och föroreningar. Uttnyttjandet av tidvattenzonen är stort och min avhandling har visat att aktiviteter såsom fiske i form av plocking av musslor och andra ryggradslösa djur och hamnaktiviteter påverkar den biologiska mångfalden negativt, vilket leder till försämrad levnadsstandard för resursutnyttjande människor i regionen. För att förbättra situationen krävs det mer forskning, miljöövervakning och bättre förvaltning av tidvattenzonen. Experter i regionen har rangordnat förslag på förvaltningsstrategier som skulle kunna testas för att förbättra miljön och skapa ett mer hållbart nyttjande. Avhandlingen visar även att det är möjligt att använda fjärranalysteknik såsom satellitbildsanalys för att kvantifiera mängden sjögräsvegetation (i form av biomassa), vilket kan ha stor betydelse för att förbättra storskalig miljöövervakning av kustnära naturtyper (habitat). I avhandlingsarbetet har jag använt mig av ett multidisciplinärt tillvägagångssätt och använt metoder såsom ekologisk och biologisk provtagning, intervjuer, observationer, diskussionsgrupper, frågeformulär och fjärranalys. Resultaten presenterade i denna avhandling ger en ökad kunskap om tidvattenzonen i utvecklingsländerna inom VIO-regionen som kan användas för att initiera och fortsätta att utveckla hållbara förvaltningsstrategier av biologiska resurser.
Resumo:
Tropical forests are sources of many ecosystem services, but these forests are vanishing rapidly. The situation is severe in Sub-Saharan Africa and especially in Tanzania. The causes of change are multidimensional and strongly interdependent, and only understanding them comprehensively helps to change the ongoing unsustainable trends of forest decline. Ongoing forest changes, their spatiality and connection to humans and environment can be studied with the methods of Land Change Science. The knowledge produced with these methods helps to make arguments about the actors, actions and causes that are behind the forest decline. In this study of Unguja Island in Zanzibar the focus is in the current forest cover and its changes between 1996 and 2009. The cover and changes are measured with often used remote sensing methods of automated land cover classification and post-classification comparison from medium resolution satellite images. Kernel Density Estimation is used to determine the clusters of change, sub-area –analysis provides information about the differences between regions, while distance and regression analyses connect changes to environmental factors. These analyses do not only explain the happened changes, but also allow building quantitative and spatial future scenarios. Similar study has not been made for Unguja and therefore it provides new information, which is beneficial for the whole society. The results show that 572 km2 of Unguja is still forested, but 0,82–1,19% of these forests are disappearing annually. Besides deforestation also vertical degradation and spatial changes are significant problems. Deforestation is most severe in the communal indigenous forests, but also agroforests are decreasing. Spatially deforestation concentrates to the areas close to the coastline, population and Zanzibar Town. Biophysical factors on the other hand do not seem to influence the ongoing deforestation process. If the current trend continues there should be approximately 485 km2 of forests remaining in 2025. Solutions to these deforestation problems should be looked from sustainable land use management, surveying and protection of the forests in risk areas and spatially targeted self-sustainable tree planting schemes.
Resumo:
Most of the applications of airborne laser scanner data to forestry require that the point cloud be normalized, i.e., each point represents height from the ground instead of elevation. To normalize the point cloud, a digital terrain model (DTM), which is derived from the ground returns in the point cloud, is employed. Unfortunately, extracting accurate DTMs from airborne laser scanner data is a challenging task, especially in tropical forests where the canopy is normally very thick (partially closed), leading to a situation in which only a limited number of laser pulses reach the ground. Therefore, robust algorithms for extracting accurate DTMs in low-ground-point-densitysituations are needed in order to realize the full potential of airborne laser scanner data to forestry. The objective of this thesis is to develop algorithms for processing airborne laser scanner data in order to: (1) extract DTMs in demanding forest conditions (complex terrain and low number of ground points) for applications in forestry; (2) estimate canopy base height (CBH) for forest fire behavior modeling; and (3) assess the robustness of LiDAR-based high-resolution biomass estimation models against different field plot designs. Here, the aim is to find out if field plot data gathered by professional foresters can be combined with field plot data gathered by professionally trained community foresters and used in LiDAR-based high-resolution biomass estimation modeling without affecting prediction performance. The question of interest in this case is whether or not the local forest communities can achieve the level technical proficiency required for accurate forest monitoring. The algorithms for extracting DTMs from LiDAR point clouds presented in this thesis address the challenges of extracting DTMs in low-ground-point situations and in complex terrain while the algorithm for CBH estimation addresses the challenge of variations in the distribution of points in the LiDAR point cloud caused by things like variations in tree species and season of data acquisition. These algorithms are adaptive (with respect to point cloud characteristics) and exhibit a high degree of tolerance to variations in the density and distribution of points in the LiDAR point cloud. Results of comparison with existing DTM extraction algorithms showed that DTM extraction algorithms proposed in this thesis performed better with respect to accuracy of estimating tree heights from airborne laser scanner data. On the other hand, the proposed DTM extraction algorithms, being mostly based on trend surface interpolation, can not retain small artifacts in the terrain (e.g., bumps, small hills and depressions). Therefore, the DTMs generated by these algorithms are only suitable for forestry applications where the primary objective is to estimate tree heights from normalized airborne laser scanner data. On the other hand, the algorithm for estimating CBH proposed in this thesis is based on the idea of moving voxel in which gaps (openings in the canopy) which act as fuel breaks are located and their height is estimated. Test results showed a slight improvement in CBH estimation accuracy over existing CBH estimation methods which are based on height percentiles in the airborne laser scanner data. However, being based on the idea of moving voxel, this algorithm has one main advantage over existing CBH estimation methods in the context of forest fire modeling: it has great potential in providing information about vertical fuel continuity. This information can be used to create vertical fuel continuity maps which can provide more realistic information on the risk of crown fires compared to CBH.
Resumo:
Our surrounding landscape is in a constantly dynamic state, but recently the rate of changes and their effects on the environment have considerably increased. In terms of the impact on nature, this development has not been entirely positive, but has rather caused a decline in valuable species, habitats, and general biodiversity. Regardless of recognizing the problem and its high importance, plans and actions of how to stop the detrimental development are largely lacking. This partly originates from a lack of genuine will, but is also due to difficulties in detecting many valuable landscape components and their consequent neglect. To support knowledge extraction, various digital environmental data sources may be of substantial help, but only if all the relevant background factors are known and the data is processed in a suitable way. This dissertation concentrates on detecting ecologically valuable landscape components by using geospatial data sources, and applies this knowledge to support spatial planning and management activities. In other words, the focus is on observing regionally valuable species, habitats, and biotopes with GIS and remote sensing data, using suitable methods for their analysis. Primary emphasis is given to the hemiboreal vegetation zone and the drastic decline in its semi-natural grasslands, which were created by a long trajectory of traditional grazing and management activities. However, the applied perspective is largely methodological, and allows for the application of the obtained results in various contexts. Models based on statistical dependencies and correlations of multiple variables, which are able to extract desired properties from a large mass of initial data, are emphasized in the dissertation. In addition, the papers included combine several data sets from different sources and dates together, with the aim of detecting a wider range of environmental characteristics, as well as pointing out their temporal dynamics. The results of the dissertation emphasise the multidimensionality and dynamics of landscapes, which need to be understood in order to be able to recognise their ecologically valuable components. This not only requires knowledge about the emergence of these components and an understanding of the used data, but also the need to focus the observations on minute details that are able to indicate the existence of fragmented and partly overlapping landscape targets. In addition, this pinpoints the fact that most of the existing classifications are too generalised as such to provide all the required details, but they can be utilized at various steps along a longer processing chain. The dissertation also emphases the importance of landscape history as an important factor, which both creates and preserves ecological values, and which sets an essential standpoint for understanding the present landscape characteristics. The obtained results are significant both in terms of preserving semi-natural grasslands, as well as general methodological development, giving support to science-based framework in order to evaluate ecological values and guide spatial planning.