999 resultados para Environmental fragility
Resumo:
Summary : Due to anthropogenic impacts and natural fluctuations, fish usually have to cope with constantly changing and often hostile environments. Whereas adult fish have various possibilities to counteract unfavourable environmental conditions, embryos have much fewer options. Besides by their developing immune system, they are protected by the egg envelopes and several immune substances provided by their mothers. In addition to this, they may also adjust their hatching timing in reaction to various risks. However, individuals may vary in their defensive potential. This variation may be either based on their genetics and/or on differential maternal investments and may be dependent on the experienced stress. Nevertheless, in fish, the impact of such parental contributions on embryo and/or juvenile viability is still poorly investigated. The main objective of this thesis was to investigate the importance of paternal (i.e. genetic) and maternal (i.e. genetic + egg investment) contributions to offspring viability under different environmental conditions and at different life stages. In order to investigate this, we used gametes of various salmonids for in vitro fertilisation experiments based on full-factorial breeding designs. The individual studies are summarised in the following chapters: In the first chapter, we tested the effectiveness of the embryonic immune system in Lake whitefish (Coregonus palaea). Namely, we investigated paternal and maternal contributions to the embryos' tolerance to different kinds of pathogen exposure. Additionally, we tested whether an early sub-léthal exposure has a positive or a negative effect on an embryo's susceptibility to later pathogen exposures with the same pathogen. We found that pre-challenged embryos were more susceptible to future challenges. Moreover, pathogen susceptibility was dependent on maternal investments and/or the embryos' own genetics, depending on the challenge level. Chapter 2 summarises a similar study with brown trout (Salmo trutta). In addition to the previously described investigations, we analysed if genetic effects on offspring viability are mediated either by parental MHC genotypes or relatedness based on neutral microsatellite markers, and we tested if males signal their genetic quality either by their body size or their melanin-based skin colouration. We found that embryo survival was lower at higher stress levels and dependent on the embryos' genetics. Addirionally, parents with similar and/or, very common MHC genotypes had higher offspring viabilities. Finally, darker males produced more viable offspring. In the first two chapters we investigated the embryos' defensive potential based on their immune system, i.e. their pathogen tolerance. In chapter 3 we investigate whether hatching timing of Lake whitefìsh (C. palaea) is dependent on parental contributions and/or on pathogen pressure, and whether there are parental-environmental interactions. We found that whitefish embryos hatch earlier under increasing pathogen pressure. Moreover, hatching timing was affected by embryo genetics and/or maternally provided resources, but the magnitude of the effect was dependent on the pathogen. pressure. We also found a significant paternal-environmental interaction, indicating that the hatching efficiency of a certain sib group is dependent on the pathogen environment. Chapter 4 describes an analogous study with brown trout (S. trutta), with similar findings. In the former chapters, we only looked at offspring performance during the embryonic period, and only under semi-natural conditions. In chapter 5 we now test the performance and viability of embryonic and juvenile brown trout (S. trutta) under natural conditions. To measure embryo viability, we put them in brood boxes, buried them in the gravel of a natural river, and analysed survival after several months. To investigate juvenile survival and performance, wé reared embryos under different stress levels in the laboratory and subsequently released the resulting hatchlings in to a closed river section. Juvenile size and survival was then determined one year later. Additionally, we investigated if sires differ in their genetic quality, determined by embryo and juvenile survival as well as juvenile size, and if they signal their quality by either body size or melanin-based body darkness. We found hat juvenile size was dependent on genetic effects and on maternal investment, whereas this was neither the case for embryo nor for juvenile survival. Additionally, we found that offspring of darker males grew larger, and larger juveniles had also an increased survival. Finally, we found acarry-over effect of the early non-lethal challenge: exposing embryos to higher stress levels resulted in smaller juveniles. To evaluate the long-term performance of differently treated groups, mark-recapture studies are inevitable. For this purpose, effective mass-marking techniques are essential. In chapter 6 we tested the suitability of the fluorescent pigment spray marking method for the mass marking of European graylings (Thymallus thymallus), with very promising results. Our in vitro fertilisation studies on whitefish may reveal new insights on potential genetic benefits of mate choice, but the mating system of whitefish under natural conditions is still poorly investigated. In order to study this, we installed underwater cameras at the spawning place of a Coregonus suidteri population, recorded the whole mating period and subsequently analysed the recordings. Confirmations of previous findings as well as exciting new observations are listed and discussed in chapter 7. Dus aux impacts anthropogéniques et aux fluctuations naturelles, les poissons doivent faire face à des environnements en perpétuel changement. Ces changements font que les poissons doivent s'adapter à de nouvelles situations, souvent hostiles pour eux. Les adultes ont différentes possibilités d'échapper à un environnement peu favorable, ce n'est par contre pas le cas des embryons. Les embryons sont protégés d'une part par leur système immunitaire en développement, d'autre part, par la coquille de l'eeuf et différentes substances immunitaires fournies par leur mère. De plus, ils sont capables d'influencer leur propre date d'éclosion en réponse à différents facteurs de stress. Malgré tout, les individus varient dans leur capacité à se défendre. Cette variation peut être basé sur des facteurs génétiques et/ou sur des facteurs maternels, et est dépendante du stress subi. Néanmoins, chez les poissons, l'impact de telles contributions parentales sur la survie d'embryons et/ou juvéniles est peu étudié. L'objectif principal de cette thèse a été d'approfondir les connaissances sur l'importance de la contribution paternelle (c.a.d. génétique) et maternelle (c.a.d. génétique + investissement dans l'oeuf) sur la survie des jeunes dans différentes conditions expérimentales et stades de vie. Pour faire ces analyses, nous avons utilisé des gamètes de divers salmonidés issus de croisements 'full-factorial'. Les différentes expériences sont résumées dans les chapitres suivants: Dans le premier chapitre, nous avons testé l'efficacité du système immunitaire des embryons chez les corégones (Coregonus palea). Plus précisément nous avons étudié la contribution paternelle et maternelle à la tolérance des embryons à différents niveaux de stress pathogène. Nous avons aussi testé, si une première exposition non létale à un pathogène avait un effet positif ou négatif sur la susceptibilité d'un embryon a une deuxième exposition au même pathogène. Nous avons trouvé que des embryons qui avaient été exposés une première fois étaient plus sensibles au pathogène par la suite. Mais aussi que la sensibilité au pathogène était dépendante de l'investissement de la mère et/ou des gènes de l'embryon, dépendamment du niveau de stress. Le deuxième chapitre résume une étude similaire avec des truites (Salmo truffa). Nous avons examiné, si la survie des jeunes variait sous différentes intensités de stress, et si la variance observée était due aux gènes des parents. Nous avons aussi analysé si les effets génétiques sur la survie des juvéniles étaient dus au MHC (Major Histocompatibility Complex) ou au degré de parenté des parents. De plus, nous avons analysé si les mâles signalaient leur qualité génétique par la taille du corps ou par leur coloration noire, due à la mélanine. On a trouvé que la survie des embryons était plus basse quand le niveau de stress était plus haut mais que la variation restait dépendante de la génétique des embryons. De plus, les parents avec des MHC similaires et/ou communs avaient des embryons avec une meilleure survie. Par contre, des parents avec un degré de parenté plus haut produisent des embryons avec une survie plus mauvaise. Finalement nous avons montré que les mâles plus foncés ont des embryons qui survivent mieux, mais que la taille des mâles n'a pas d'influence sur la survie de ces mêmes embryons. Dans les deux premiers chapitres, nous avons étudié le potentiel de défense des embryons basé sur leur système immunitaire, c.a.d. leur tolérance aux pathogènes. Dans le troisième chapitre, nous nous intéressons à la date d'éclosion des corégones (C. palea), pour voir si elle est influencée par les parents ou par la pression des pathogènes, et si il y a une interaction entre ces deux facteurs. Nous avons trouvé que les jeunes naissent plus rapidement lorsque la pression en pathogènes augmente. La date d'éclosion est influencée par la génétique des embryons et/ou l'investissement des parents, mais c'est la magnitude des effets qui est dépendante de la pression du pathogène. Nous avons aussi trouvé une interaction entre l'effet paternel et l'environnement, ce qui indique que la rapidité d'éclosion de certains croisements est dépendante des pathogènes dans l'environnement. Le chapitre 4 décrit une étude analogue avec de truites (S. truffa), avec des résultats sitzimilaires. Dans les précédents chapitres nous nous sommes uniquement concentrés sur les performances des jeunes durant leur stade embryonnaire, et seulement dans des conditions semi naturelles. Dans le chapitre 5 nous testons la performance et la viabilité des embryons et de juvéniles de truites (S. truffa) dans des conditions naturelles. Nous avons trouvé que la taille des juvéniles était dépendante d'effets génétiques et de l'investissement maternel, mais ceci n'était ni les cas pour les survie des embryons et des juvéniles. De plus, nous avons trouvé que les jeunes des mâles plus foncés devenaient plus grands et que les grands ont un meilleur taux de survie. Finalement nous avons trouvé un 'carry-over effect' d'une première exposition non létale à un pathogène: exposer des embryons à des plus hauts niveaux de stress donnait des juvéniles plus petits. Pour évaluer la performance à long terme de groupes traités dé manières différentes, une méthode de marquage-recapture est inévitable. Pour cette raison, des techniques de marquage en masse sont nécessaires. Dans le chapitre 6, nous avons testé l'efficacité de la technique `fluorescent pigment spray marking' pour le marquage en masse de l'Ombre commun (Thymallus thymallus), avec des résultats très prometteurs. Les études de fertilisations in vitro avec les corégones nous donnent une idée du potentiel bénéfice génétique que représente la sélection d'un bon partenaire, même si le système d'accouplement des corégones en milieu naturel reste peu connu. Pour combler cette lacune, nous avons installé des caméras sous-marines autour de la frayère d'une population de corégones (C. suidteri), nous avons enregistré toute la période de reproduction et nous avons analysé les données par la suite. Ainsi, nous avons été capables de confirmer bien des résultats trouvés précédemment, mais aussi de faire de nouvelles observations. Ces résultats sont reportés dans le septième chapitre, où elles sont comparées avec des observations antérieures.
Resumo:
Biological monitoring of occupational exposure is characterized by important variability, due both to variability in the environment and to biological differences between workers. A quantitative description and understanding of this variability is important for a dependable application of biological monitoring. This work describes this variability,using a toxicokinetic model, for a large range of chemicals for which reference biological reference values exist. A toxicokinetic compartmental model describing both the parent compound and its metabolites was used. For each chemical, compartments were given physiological meaning. Models were elaborated based on physiological, physicochemical, and biochemical data when available, and on half-lives and central compartment concentrations when not available. Fourteen chemicals were studied (arsenic, cadmium, carbon monoxide, chromium, cobalt, ethylbenzene, ethyleneglycol monomethylether, fluorides, lead, mercury, methyl isobutyl ketone, penthachlorophenol, phenol, and toluene), representing 20 biological indicators. Occupational exposures were simulated using Monte Carlo techniques with realistic distributions of both individual physiological parameters and exposure conditions. Resulting biological indicator levels were then analyzed to identify the contribution of environmental and biological variability to total variability. Comparison of predicted biological indicator levels with biological exposure limits showed a high correlation with the model for 19 out of 20 indicators. Variability associated with changes in exposure levels (GSD of 1.5 and 2.0) is shown to be mainly influenced by the kinetics of the biological indicator. Thus, with regard to variability, we can conclude that, for the 14 chemicals modeled, biological monitoring would be preferable to air monitoring. For short half-lives (less than 7 hr), this is very similar to the environmental variability. However, for longer half-lives, estimated variability decreased. [Supplementary materials are available for this article. Go to the publisher's online edition of Journal of Occupational and Environmental Hygiene for the following free supplemental resource: tables detailing the CBTK models for all 14 chemicals and the symbol nomenclature that was used.] [Authors]
Resumo:
Aquaporins (AQPs) are membrane channels belonging to the major intrinsic proteins family and are known for their ability to facilitate water movement. While in Populus trichocarpa, AQP proteins form a large family encompassing fifty-five genes, most of the experimental work focused on a few genes or subfamilies. The current work was undertaken to develop a comprehensive picture of the whole AQP gene family in Populus species by delineating gene expression domain and distinguishing responsiveness to developmental and environmental cues. Since duplication events amplified the poplar AQP family, we addressed the question of expression redundancy between gene duplicates. On these purposes, we carried a meta-analysis of all publicly available Affymetrix experiments. Our in-silico strategy controlled for previously identified biases in cross-species transcriptomics, a necessary step for any comparative transcriptomics based on multispecies design chips. Three poplar AQPs were not supported by any expression data, even in a large collection of situations (abiotic and biotic constraints, temporal oscillations and mutants). The expression of 11 AQPs was never or poorly regulated whatever the wideness of their expression domain and their expression level. Our work highlighted that PtTIP1;4 was the most responsive gene of the AQP family. A high functional divergence between gene duplicates was detected across species and in response to tested cues, except for the root-expressed PtTIP2;3/PtTIP2;4 pair exhibiting 80% convergent responses. Our meta-analysis assessed key features of aquaporin expression which had remained hidden in single experiments, such as expression wideness, response specificity and genotype and environment interactions. By consolidating expression profiles using independent experimental series, we showed that the large expansion of AQP family in poplar was accompanied with a strong divergence of gene expression, even if some cases of functional redundancy could be suspected.
Resumo:
The most common trends observed in ammonoid evolution during ecologically stable periods are characterized by an increase of shell curvature (e.g. evolute to involute), by the development of more complex ornamentation (flexuosity of ribbing, appearance of nodes and spines) and by a long term increase of the suture line's fractal dimension. Major evolutionary jumps in ammonoids occur during severe extinction events, and are characterized by the sudden appearance of simple, primitive-looking forms which are similar to remote ancestors of their more complex immediate progenitors. Such forms are interpreted as atavistic. According to this hypothesis, homeomorphic species generated during such sublethal stress events can be separated by several millions of years.
Resumo:
The whole body sweating response was measured at rest in eight women during the follicular (F) and the luteal (L) phases of the menstrual cycle. Subjects were exposed for 30-min to neutral (N) environmental conditions [ambient temperature (Ta) 28 degrees C] and then for 90-min to warm (W) environmental conditions (Ta, 35 degrees C) in a direct calorimeter. At the end of the N exposure, tympanic temperature (Tty) was 0.18 (SEM 0.06) degrees C higher in the L than in the F phase (P less than 0.05), whereas mean skin temperature (Tsk) was unchanged. During W exposure, the time to the onset of sweating as well as the concomitant increase in body heat content were similar in both phases. At the onset of sweating, the tympanic threshold temperature (Tty,thresh) was higher in the L phase [37.18 (SEM 0.08) degrees C] than in the F phase [36.95 (SEM 0.07) degrees C; P less than 0.01]. The magnitude of the shift in Tty,thresh [0.23 (SEM 0.07) degrees C] was similar to the L-F difference in Tty observed at the end of the N exposure. The mean skin threshold temperature was not statistically different between the two phases. The slope of the relationship between sweating rate and Tty was similar in F and L. It was concluded that the internal set point temperature of resting women exposed to warm environmental conditions shifted to a higher value during the L phase compared to the F phase of the menstrual cycle; and that the magnitude of the shift corresponded to the difference in internal temperature observed in neutral environmental conditions between the two phases.
Resumo:
Audit report on the ADLM Counties Environmental Public Health Agency for the year ended June 30, 2009
Resumo:
Iowa is one of the more progressive recycling states in the U.S. due in large part to its environmental technical assistance programs for business. The Iowa Department of Economic Development (IDED), Iowa Department of Natural Resources (IDNR), the Recycle Reuse Technology Transfer Center (RRTTC) and the Iowa Waste Reduction Center (IWRC) work together to offer services that help businesses save money, increase operational efficiencies, enhance regulatory compliance and manage difficult waste management issues.
Resumo:
P
Resumo:
A nationwide survey was conducted in Switzerland to assess the quality level of osteoporosis management in patients aged 50 years or older presenting with a fragility fracture to the emergency ward of the participating hospitals. Eight centres recruited 4966 consecutive patients who presented with one or more fractures between 2004 and 2006. Of these, 3667 (2797 women, 73.8 years old and 870 men, 73.0 years old in average) were considered as having a fragility fracture and included in the survey. Included patients presented with a fracture of the upper limbs (30.7%), lower limbs (26.4%), axial skeleton (19.5%) or another localisation, including malleolar fractures (23.4%). Thirty-two percent reported one or more previous fractures during adulthood. Of the 2941 (80.2%) hospitalised women and men, only half returned home after discharge. During diagnostic workup, dual x-ray absorptiometry (DXA) measurement was performed in 31.4% of the patients only. Of those 46.0% had a T-score < or =-2.5 SD and 81.1% < or =-1.0 SD. Osteoporosis treatment rate increased from 26.3% before fracture to 46.9% after fracture in women and from 13.0% to 30.3% in men. However, only 24.0% of the women and 13.8% of the men were finally adequately treated with a bone active substance, generally an oral bisphosphonate, with or without calcium / vitamin D supplements. A positive history of previous fracture vs none increased the likelihood of getting treatment with a bone active substance (36.6 vs 17.9%, ? 18.7%, 95% CI 15.1 to 22.3, and 22.6 vs 9.9%, ? 12.7%, CI 7.3 to 18.5, in women and men, respectively). In Switzerland, osteoporosis remains underdiagnosed and undertreated in patients aged 50 years and older presenting with a fragility fracture.
Resumo:
This Tier 2 Environmental Assessment (EA) presents the results of studies and analysis conducted to determine the potential impacts of proposed improvements in Segment 3 of the Council Bluffs Interstate System (CBIS) in the Council Bluffs metropolitan area. This document is tiered to the Tier 1 Draft and Final Environmental Impact Statements (EIS) that evaluated impacts of the overall CBIS Improvements Project, which includes five segments of independent utility This EA on Segment 3 of the Project is divided into the following sections: and encompasses 18 mainline miles of Interstate and 14 interchanges along Interstate 80 (I-80), Interstate 29 (I-29), and Interstate 480 (I-480).
Resumo:
A sustainable management of soils with low natural fertility on family farms in the humid tropics is a great challenge and overcoming it would be an enormous benefit for the environment and the farmers. The objective of this study was to assess the environmental and agronomic benefits of alley cropping, based on the evaluation of C sequestration, soil quality indicators, and corn yields. Combinations of four legumes were used in alley cropping systems in the following treatments: Clitoria fairchildiana + Cajanus cajan; Acacia mangium + Cajanus cajan; Leucaena leucocephala + Cajanus cajan; Clitoria fairchildiana + Leucaena leucocephala; Leucaena leucocephala + Acacia mangium and a control. Corn was used as a cash crop. The C content was determined in the different compartments of soil organic matter, CEC, available P, base saturation, percentage of water saturation, the period of the root hospitality factor below the critical level and corn yield. It was concluded that alley cropping could substitute the slash and burn system in the humid tropics. The main environmental benefit of alley cropping is the maintenance of a dynamic equilibrium between C input and output that could sustain up to 10 Mg ha-1 of C in the litter layer, decreasing atmospheric CO2 levels. Alley cropping is also beneficial from the agricultural point of view, because it increases base saturation and decreases physical resistance to root penetration in the soil layer 0 - 10 cm, which ensures the increase and sustainability of corn yield.
Resumo:
Sphingomonas wittichii RW1 is a dibenzofuran and dibenzodioxin-degrading bacterium with potentially interesting properties for bioaugmentation of contaminated sites. In order to understand the capacity of the microorganism to survive in the environment we used a genome-wide transposon scanning approach. RW1 transposon libraries were generated with around 22 000 independent insertions. Libraries were grown for an average of 50 generations (five successive passages in batch liquid medium) with salicylate as sole carbon and energy source in presence or absence of salt stress at -1.5 MPa. Alternatively, libraries were grown in sand with salicylate, at 50% water holding capacity, for 4 and 10 days (equivalent to 7 generations). Library DNA was recovered from the different growth conditions and scanned by ultrahigh throughput sequencing for the positions and numbers of inserted transposed kanamycin resistance gene. No transposon reads were recovered in 579 genes (10% of all annotated genes in the RW1 genome) in any of the libraries, suggesting those to be essential for survival under the used conditions. Libraries recovered from sand differed strongly from those incubated in liquid batch medium. In particular, important functions for survival of cells in sand at the short term concerned nutrient scavenging, energy metabolism and motility. In contrast to this, fatty acid metabolism and oxidative stress response were essential for longer term survival of cells in sand. Comparison to transcriptome data suggested important functions in sand for flagellar movement, pili synthesis, trehalose and polysaccharide synthesis and putative cell surface antigen proteins. Interestingly, a variety of genes were also identified, interruption of which cause significant increase in fitness during growth on salicylate. One of these was an Lrp family transcription regulator and mutants in this gene covered more than 90% of the total library after 50 generations of growth on salicylate. Our results demonstrate the power of genome-wide transposon scanning approaches for analysis of complex traits.
Resumo:
The loss of biodiversity has become a matter of urgent concern and a better understanding of local drivers is crucial for conservation. Although environmental heterogeneity is recognized as an important determinant of biodiversity, this has rarely been tested using field data at management scale. We propose and provide evidence for the simple hypothesis that local species diversity is related to spatial environmental heterogeneity. Species partition the environment into habitats. Biodiversity is therefore expected to be influenced by two aspects of spatial heterogeneity: 1) the variability of environmental conditions, which will affect the number of types of habitat, and 2) the spatial configuration of habitats, which will affect the rates of ecological processes, such as dispersal or competition. Earlier, simulation experiments predicted that both aspects of heterogeneity will influence plant species richness at a particular site. For the first time, these predictions were tested for plant communities using field data, which we collected in a wooded pasture in the Swiss Jura mountains using a four-level hierarchical sampling design. Richness generally increased with increasing environmental variability and "roughness" (i.e. decreasing spatial aggregation). Effects occurred at all scales, but the nature of the effect changed with scale, suggesting a change in the underlying mechanisms, which will need to be taken into account if scaling up to larger landscapes. Although we found significant effects of environmental heterogeneity, other factors such as history could also be important determinants. If a relationship between environmental heterogeneity and species richness can be shown to be general, recently available high-resolution environmental data can be used to complement the assessment of patterns of local richness and improve the prediction of the effects of land use change based on mean site conditions or land use history.