953 resultados para Environemental gradient
Resumo:
Objective: To investigate the association of different types of magnetic resonance imaging (MRI)-detected medial meniscal pathology with subregional cartilage loss in the medial tibiofemoral compartment. Methods: A total of 152 women aged >= 40 years, with and without knee osteoarthritis (OA) were included in a longitudinal 24-month observational study. Spoiled gradient recalled acquisitions at steady state (SPGR) and T2-weighted fat-suppressed MRI sequences were acquired. Medial meniscal status of the anterior horn (AH), body, and posterior horn (PH) was graded at baseline: 0 (normal), 1 (intrasubstance meniscal signal changes), 2 (single tears), and 3 (complex tears/maceration). Cartilage segmentation was performed at baseline and 24-month follow-up in various tibiofemoral subregions using computation software. Multiple linear regression models were applied for the analysis with cartilage loss as the outcome. In a first model, the results were adjusted for age and body mass index (BMI). In a second model, the results were adjusted for age, BMI and medial meniscal extrusion. Results: After adjusting for age, BMI, and medial meniscal extrusion, cartilage loss in the total medial tibia (MT) (0.04 mm, P=0.04) and the external medial tibia (eMT) (0.068 mm, P=0.04) increased significantly for compartments with grade 3 lesions. Cartilage loss in the total central medial femoral condyle (cMF) (0.071 mm, P=0.03) also increased significantly for compartments with grade 2 lesions. Cartilage loss at the eMT was significantly related to tears of the PH (0.074 mm; P=0.03). Cartilage loss was not significantly increased for compartments with grade 1 lesions. Conclusion: The protective function of the meniscus appears to be preserved in the presence of intrasubstance meniscal signal changes. Prevalent single tears and meniscal maceration were found to be associated with increased cartilage loss in the same compartment, especially at the PH. (C) 2009 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Resumo:
Yogi A, Callera GE, Tostes R, Touyz RM. Bradykinin regulates calpain and proinflammatory signaling through TRPM7-sensitive pathways in vascular smooth muscle cells. Am J Physiol Regul Integr Comp Physiol 296: R201-R207, 2009. First published September 17, 2008; doi: 10.1152/ajpregu.90602.2008.-Transient receptor potential melastatin-7 (TRPM7) channels have recently been identified to be regulated by vasoactive agents acting through G protein-coupled receptors in vascular smooth muscle cells (VSMC). However, downstream targets and functional responses remain unclear. We investigated the subcellular localization of TRPM7 in VSMCs and questioned the role of TRPM7 in proinflammatory signaling by bradykinin. VSMCs from Wistar-Kyoto rats were studied. Cell fractionation by sucrose gradient and differential centrifugation demonstrated that in bradykinin-stimulated cells, TRPM7 localized in fractions corresponding to caveolae. Immunofluorescence confocal microscopy revealed that TRPM7 distributes along the cell membrane, that it has a reticular-type intracellular distribution, and that it colocalizes with flotillin-2, a marker of lipid rafts. Bradykinin increased expression of calpain, a TRPM7 target, and stimulated its cytosol/membrane translocation, an effect blocked by 2-APB (TRPM7 inhibitor) and U-73122 (phospholipase C inhibitor), but not by chelerythrine (PKC inhibitor). Expression of proinflammatory mediators VCAM-1 and cyclooxygenase-2 (COX-2) was time-dependently increased by bradykinin. This effect was blocked by Hoe-140 (B(2) receptor blocker) and 2-APB. Our data demonstrate that in bradykinin-stimulated VSMCs: 1) TRPM7 is upregulated, 2) TRPM7 associates with cholesterol-rich microdomains, and 3) calpain and proinflammatory mediators VCAM-1 and COX2 are regulated, in part, via TRPM7- and phospholipase C-dependent pathways through B2 receptors. These findings identify a novel signaling pathway for bradykinin, which involves TRPM7. Such phenomena may play a role in bradykinin/B(2) receptor-mediated inflammatory responses in vascular cells.
Resumo:
Production and secretion of testosterone in Leydig cells are mainly controlled by the luteinizing hormone (LH). Biochemical evidences suggest that the activity of Cl(-) ions can modulate the steroidogenic process, but the specific ion channels involved are not known. Here, we extend the characterization of Cl(-) channels in mice Leydig cells (50-60 days old) by describing volume- activated Cl(-) currents (I(Cl,swell)). The amplitude of I(Cl,swell) is dependent on the osmotic gradient across the cell membrane, with an apparent EC(50) of similar to 75 mOsm. These currents display the typical biophysical signature of volume- activated anion channels (VRAC): dependence on intracellular ATP, outward rectification, inactivation at positive potentials, and selectivity sequence (I(-)>Cl(-)>F(-)). Staurosporine (200 nM) did not block the activation of I(Cl), swell. The block induced by 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB; 128 mu M), SITS (200 mu M), ATP (500 mu M), pyridoxalphosphate-6- azophenyl-2`,4`-disulfonate (PPADS; 100 mu M), and Suramin (10 mu M) were described by the permeant blocker model with apparent dissociation constant at 0 mV K(d)(0) and fractional distance of the binding site (delta) of 334 mu M and 47%, 880 mu M and 35%, 2,100 mu M and 49%, 188 mu M and 27%, and 66.5 mu M and 49%, respectively. These numbers were derived from the peak value of the currents. We conclude that ICl, swell in Leydig cells are activated independently of purinergic stimulation, that Suramin and PPADS block these currents by a direct interaction with VRAC and that ATP is able to permeate this channel.
Resumo:
Principal cells of the medial nucleus of the trapezoid body (MNTB) are simple round neurons that receive a large excitatory synapse (the calyx of Held) and many small inhibitory synapses on the soma. Strangely, these neurons also possess one or two short tufted dendrites, whose function is unknown. Here we assess the role of these MNTB cell dendrites using patch-clamp recordings, imaging and immunohistochemistry techniques. Using outside-out patches and immunohistochemistry, we demonstrate the presence of dendritic Na(+) channels. Current-clamp recordings show that tetrodotoxin applied onto dendrites impairs action potential (AP) firing. Using Na(+) imaging, we show that the dendrite may serve to maintain AP amplitudes during high-frequency firing, as Na(+) clearance in dendritic compartments is faster than axonal compartments. Prolonged high-frequency firing can diminish Na(+) gradients in the axon while the dendritic gradient remains closer to resting conditions; therefore, the dendrite can provide additional inward current during prolonged firing. Using electron microscopy, we demonstrate that there are small excitatory synaptic boutons on dendrites. Multi-compartment MNTB cell simulations show that, with an active dendrite, dendritic excitatory postsynaptic currents (EPSCs) elicit delayed APs compared with calyceal EPSCs. Together with high- and low-threshold voltage-gated K(+) currents, we suggest that the function of the MNTB dendrite is to improve high-fidelity firing, and our modelling results indicate that an active dendrite could contribute to a `dual` firing mode for MNTB cells (an instantaneous response to calyceal inputs and a delayed response to non-calyceal dendritic excitatory postsynaptic potentials).
Resumo:
Purpose: To quantitatively evaluate changes induced by the application of a femoral blood-pressure cuff (BPC) on run-off magnetic resonance angiography (MRA). which is a method generally previously proposed to reduce venous contamination in the leg. Materials and Methods: This study was Health Insurance Portability and Accountability Act (HIPAA)- and Institutional Review Board (IRB)-compliant, We used time-resolved gradient-echo gadolinium (Gd)-enhanced MRA to measure BPC effects on arterial, venous, and soft-tissue enhancement. Seven healthy volunteers (six men) were studied with the BPC applied at the mid-femoral level unilaterally using a 1.5T MR system after intravenous injection of Gd-BOPTA. Different statistical tools were used such as the Wilcoxon signed rank test and a cubic smoothing spline fit. Results: We found that BPC application induces delayed venous filling (as previously described), but also induces significant decreases in arterial inflow, arterial enhancement, vascular-soft tissue contrast, and delayed peak enhancement (which have not been previously measured). Conclusion: The potential benefits from using a BPC for run-off MRA must be balanced against the potential pitfalls, elucidated by our findings.
Resumo:
Chorea-acanthocytosis (ChAc) is an uncommon autosomal recessive disorder due to mutations of the VPS13A gene, which encodes for the membrane protein chorein. ChAc presents with progressive limb and orobuccal chorea, but there is often a marked dysexecutive syndrome. ChAc may first present with neuropsychiatric disturbance such as obsessive-compulsive disorder (OCD), suggesting a particular role for disruption to striatal structures involved in non-motor frontostriatal loops, such as the head of the caudate nucleus. Two previous studies have suggested a marked reduction in volume in the caudate nucleus and putamen, but did not examine morphometric change. We investigated morphometric change in 13 patients with genetically or biochemically confirmed ChAc and 26 age- and gender-matched controls. Subjects underwent magnetic resonance imaging and manual segmentation of the caudate nucleus and putamen, and shape analysis using a non-parametric spherical harmonic technique. Both structures showed significant and marked reductions in volume compared with controls, with reduction greatest in the caudate nucleus. Both structures showed significant shape differences, particularly in the head of the caudate nucleus. No significant correlation was shown between duration of illness and striatal volume or shape, suggesting that much structural change may have already taken place at the time of symptom onset. Our results suggest that striatal neuron loss may occur early in the disease process, and follows a dorsal-ventral gradient that may correlate with early neuropsychiatric and cognitive presentations of the disease. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Magnetic resonance (MR) imaging is the most important imaging modality for the evaluation of traumatic or degenerative cartilaginous lesions in the knee. It is a powerful noninvasive tool for detecting such lesions and monitoring the effects of pharmacologic and surgical therapy. The specific MR imaging techniques used for these purposes can be divided into two broad categories according to their usefulness for morphologic or compositional evaluation. To assess the structure of knee cartilage, standard spin-echo (SE) and gradient-recalled echo (GRE) sequences, fast SE sequences, and three-dimensional SE and GRE sequences are available. These techniques allow the detection of morphologic defects in the articular cartilage of the knee and are commonly used in research for semiquantitative and quantitative assessments of cartilage. To evaluate the collagen network and proteoglycan content in the knee cartilage matrix, compositional assessment techniques such as T2 mapping, delayed gadolinium-enhanced MR imaging of cartilage (or dGEMRIC), T1 rho imaging, sodium imaging, and diffusion-weighted imaging are available. These techniques may be used in various combinations and at various magnetic field strengths in clinical and research settings to improve the characterization of changes in cartilage. (C)RSNA, 2011 , radiographics.rsna.org
Resumo:
The present study was conducted to determine the affect of pre-treating of oocytes and/or sperm with a rabbit polyclonal antibody against recombinant cattle lipocalin type prostaglandin D synthase (alpha L-PGDS) on in vitro sperm-oocyte binding and fertilization. In vitro matured cattle oocytes were incubated (39 degrees C, 5% CO2 in air) for I It in the following treatments either 500 mu L of fertilization medium (FM) or FM with alpha L-PGDS (1:2000). Frozen-thawed spermatozoa were washed by a 45/90% layered Percoll gradient centrifugation and incubated for I h either FM or FM with a L-PGDS. This study utilized five different treatments: (1) no antibody (control); (2) a rabbit IgG against a non-bovine antigen, bacterial histidase (alpha-hist); (3) a L-PGDS at fertilization time (with fertilization medium); (4) alpha L-PGDS-treated oocytes; or (5) a L-PGDS-treated sperm. Pre-treated oocytes were incubated with 10 X 10(4) washed spermatozoa per 25 oocytes. Oocytes used to assess sperm binding were stained with Hoescht 33342, and the number of sperm bound per zonae pellucidae counted. The remaining oocytes were fixed in acid alcohol, stained with 1% acetate-orcein and observed to determine the presence of pronuclei. More sperm bound to the zonae pellucidae when oocytes and/or sperm were pre-treated with alpha. L-PGDS: (1) 26.4 +/- 3.0; (2) 25.6 +/- 3.0; (3) 59.7 +/- 3.0; (4) 56.4 +/- 3.0; and (5) 57.1 +/- 3.0. Addition of alpha L-PGDS with sperm, oocytes, or both, decreased fertilization (P < 0.05) compared with the control: (1) 89.2 +/- 2.0%; (2) 87.5 +/- 2.0%; (3) 19.4 +/- 2.0%; (4) 27.2 +/- 3.1%; and (5) 14.1 +/- 3.4%. The alpha L-PGDS reacts with both oocytes and spermatozoa, resulting in increases of in vitro sperm-oocyte binding and inhibition of fertilization. These observations suggest that L-PGDS may have a role in cattle fertilization. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Like fluoride, lead (Pb) accumulates on the enamel surface pre-eruptively, but it is not yet known whether it also deposits on enamel while dental caries is developing. This study evaluates Pb distribution in bovine enamel slabs submitted to a pH-cycling regimen simulating the caries process. The slabs were subjected to 8 cycles of de- and remineralizing conditions, and Pb (as acetate salt) was added to the de- and remineralized solutions at concentrations of 30 mu g/l (experimental group, E1) and 300 mu g/l (experimental group, E2). The control group (C) consisted of solutions to which Pb was not added. After the pH cycling, 100-mu m sections of the slabs were analyzed by polarizing microscopy, to observe the extent of caries-like lesions, and these sections were used for Pb estimation by Synchrotron radiation X-ray microfluorescence. Caries lesions were observed along all superficial enamel surfaces to an extent of 120 mu m. A Pb concentration gradient was observed in enamel, which decreased toward dentine. The highest Pb signals were observed for group E2, and the differences were statistically significant at enamel depths of 0 (C vs. E2; p = 0.029) and 50 mu m (C vs. E2 and E1 vs. E2; p = 0.029). In conclusion, this study suggests that if Pb is present in the oral environment, it may deposit in enamel during the caries process. Copyright (C) 2011 S. Karger AG, Basel
Resumo:
Structural vascular changes in two-kidney, one-clip (2K-1C) hypertension may result from increased matrix metalloproteinase (MMP)-2 activity. MMP-2 activation is regulated by other MMPs, including transmembrane-MMPs, and by tissue inhibitors of MMPs (TIMPs). We have investigated the localization of MMP-2, -9, -14, and TIMPs 1-4 in hypertensive aortas and measured their levels by zymography/Western blotting and immunohistochemistry. Gelatinolytic activity was assayed in tissues by in situ zymography. Sham-operated and 2K-1C hypertensive rats were treated with doxycycline (or vehicle) for 8 weeks, and the systolic blood pressure was monitored weekly. Doxycycline attenuated 2K-1C hypertension (165 +/- 11.7 mmHg versus 213 +/- 7.9 mm Hg in hypertensive controls, P<0.01), and completely prevented increase in the thicknesses of the media and the intima in 2K-1C animals (P<0.01). Increased amounts of MMP-2, -9, and -14 were found in hypertensive aortas, as well as enhanced gelatinolytic activity. A gradient in the localization of MMP-2, -9, and -14 was found, with increased amounts detected in the intima, at sites with higher gelatinolytic activity. Doxycycline attenuated hypertension induced increases in all the 3 investigated MMPs in both the media and the intima (all P<0.05). but it did not change the amounts of TIMPs 1-4 (P>0.05). Therefore, an imbalance between increased amounts of MMPs at the tissue level without a corresponding increase in the quantities of TIMPs, particularly in the intima and inner media layers, appears to account for the increased proteolytic activity found in 2K-1C hypertension-induced maladaptive vascular remodeling. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Nitric oxide (NO) is thought to play a key role in the development of hypoxia-induced anapyrexia in mammals, acting on the preoptic region of the anterior hypothalamus to activate autonomic heat loss responses. Regarding behavioral thermoregulation, no data exists for NO modulation/mediation of thermoregulatory behavior changes during hypoxia. Therefore, we tested the hypothesis that NO is involved in the preferred body temperature (Tb) reduction in the hypoxic toad Chaunus schneideri (formerly Bufo paracnemis), a primarily behavioral thermoregulator. Toads equipped with a temperature probe were placed in a thermal gradient chamber, and preferred Tb was monitored continuously. We analyzed the effect of intracerebroventricular injections of the nonselective NO synthase inhibitor L-NMMA (200, 400 and 800 microg per animal) or mock cerebrospinal fluid (mCSF, vehicle) on the preferred Tb of toads. No significant difference in preferred Tb was observed after L-NMMA treatments. Another group of toads treated with 2 mg kg(-1) (400 microg per animal) of L-NMMA or mCSF was submitted to hypoxia (3% inspired 02) for 8 h. The vehicle group showed a reduction of preferred Tb, a response that was inhibited by L-NMMA. A 3rd group of hypoxic animals was injected with Ringer or L-NMMA (2 mg kg(-1)) into the lymph sac and both treatments induced no change in the anapyretic response to hypoxia. These results indicate that NO acting on the central nervous system has an excitatory role for the development of hypoxia-induced anapyrexia in toads. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
High-precision Th-230-U-238 ages for a stalagmite from Newdegate Cave in southern Tasmania, Australia define a rare record of precipitation between 100 and 155 ka before the present. The fastest stalagmite growth occurred between 129.2 +/- 1.6 and 122.1 +/- 2.0 ka (similar to 61.5 mm/ka), coinciding with a time of prolific coral growth from Western Australia (128-122 ka). This is the first high-resolution continental record in the Southern Hemisphere that can be compared and correlated with the marine record. Such correlation shows that in southern Australia the onset of full interglacial sea level and the initiation of highest precipitation on land were synchronous. The stalagmite growth rate between 129.2 and 142.2 ka (similar to 5.9 mm/ka) was lower than that between 142.2 and 154.5 ka (similar to 18.7 mm/ka), implying drier conditions during the Penultimate Deglaciation, despite rising temperature and sea level. This asymmetrical precipitation pattern is caused by latitudinal movement of subtropical highs and an associated Westerly circulation, in response to a changing Equator-to-Pole temperature gradient. Both marine and continental records in Australia strongly suggest that the insolation maximum between 126 and 128 ka at 65 degreesN was directly responsible for the maintenance of full Last Interglacial conditions, although the triggers that initiated Penultimate Deglaciation (at similar to 142 ka) remain unsolved. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
A social identity theory of leadership is described that views leadership as a group process generated by social categorization and prototype-based depersonalization processes associated with social identity. Group identification, as self-categorization, constructs an intragroup prototypicality gradient that invests the most prototypical member with the appearance of having influence; the appearance arises because members cognitively and behaviorally conform to the prototype. The appearance of influence becomes a reality through depersonalized social attraction processes that make followers agree and comply with the leader's ideas and suggestions. Consensual social attraction also imbues the leader with apparent status and creates a status-based structural differentiation within the group into leader(s) and followers, which has characteristics of unequal status intergroup relations. In addition, a fundamental attribution process constructs a charismatic leadership personality for the leader, which further empowers the leader and sharpens the leader-follower status differential. Empirical support for the theory is reviewed and a range of implications discussed, including intergroup dimensions, uncertainty reduction and extremism, power, and pitfalls of prototype-based leadership.
Resumo:
Raf-1 activation is a complex process which involves plasma membrane recruitment, phosphorylation, protein-protein and lipid-protein interactions, We now show that PP1 and PP2A serine-threonine phosphatases also have a positive role in Ras dependent Raf-1 activation, General serine-threonine phosphatase inhibitors such sodium fluoride, or beta-glycerophosphate and sodium pyrophosphate, or specific PP1 and PP2A inhibitors including microcystin-LR, protein phosphatase 2A inhibitor I-1 or protein phosphatase inhibitor 2 all abrogate H-Ras and K-Ras dependent Raf-1 activation in vitro. A critical Raf-1 target residue for PP1 and PP2A is S259. Serine phosphatase inhibitors block the dephosphorylation of S259, which accompanies Raf-1 activation, and Ras dependent activation of mutant Raf259A is relatively resistant to serine phosphatase inhibitors. Sucrose gradient analysis demonstrates that serine phosphatase inhibition increases the total amount of 14-3-3 and Raf-1 associated with the plasma membrane and significantly alters the distribution of 14-3-3 and Raf-1 across different plasma membrane microdomains, These observations suggest that dephosphorylation of S259 is a critical early step in Ras dependent Raf-1 activation which facilitates 14-3-3 displacement. Inhibition of PP1 and PP2A therefore causes plasma membrane accumulation of Raf-1/14-3-3 complexes which cannot be activated.
Resumo:
The use of DNA adduct measurement as a biomarker of exposure to polycyclic aromatic hydrocarbons (PAHs) is now well established in ecotoxicology. In particular, DNA adduct levels in aquatic organisms has been found to produce a better correlation with PAH exposure than PAH concentrations in organisms. DNA adducts levels are most commonly determined using the P-32-postlabelling assay which measures total aromatic adducts. The relationship between relative DNA adduct formation and carcinogenicity has been investigated for a number of carcinogenic and non-carcinogenic PAHs using an in vitro system. Our results demonstrate that relatively high levels of DNA adducts can be produced by some non-carcinogenic PAHs, while other non-carcinogenic compounds do not produce detectable adducts. In addition, it has been shown that all carcinogenic PAHs investigated produce DNAadducts and that a relationship exists between relative adduct formation and carcinogenic potency. An investigation of adduct levels in fish liver and crustacean hepatopancreas in Oxley Ck, Brisbane has shown that higher than expected DNA adduct levels were correlated with the presence of carcinogenic and noncarcinogenic PAHs with high relative adduct forming potential.