819 resultados para Energy consumption data sets
Resumo:
This is an interim report for a study of mussel recovery and species dynamics at four California rocky intertidal sites. Conducted by Kinnetic Laboratories, Inc. (KLI), and funded by the Minerals Management Service (MMS), the initial experimental field study began in spring 1985 and continued through spring 1991. The initial field study included six sites along the central and northern California coast. In 1992, MMS decided to continue the work started by KLI through an in-house study and establishment of the MMS Intertidal (MINT) team. Four of the original six sites have been continued by MMS. The study methods of the original study have been retained by the MINT team, and close coordination with the original KLI team continues. In 1994, the MMS Environmental Studies Program officially awarded a contract to the MINT team for this in-house study. This interim report presents the results from the fall 1992 sampling, the first year of sampling by the MINT team. The report presents a limited statistical analysis and visual comparison of the 1992 data. The next interim report will include data collected during fall 1994 and will present a broader statistical analysis of both the 1992 and 1994 data sets.
Resumo:
Attempts were made to quantify the environmental impacts of the basement walls of two commercial buildings in London. Four different retaining wall options were designed based on steel and concrete systems for each of the sites. It was considered that excavation would take place with the aid of a one or two anchors system. Evaluation of embodied energy (EE) and CO2 emissions for each of the wall designs and anchoring systems were compared. Results show that there are notable differences in EE between different wall designs. Using the averaged set of Embodied Energy Intensity (EEI) values, the use of recycled steel over virgin steel would reduce the EE of the wall significantly. The difference in anchor designs is relatively insignificant, and therefore the practicality of the design for the specific site should be the deciding factor for anchor types. Generally, the scale of environmental impacts due to constructions is large compared to other aspects in life as demonstrated with the comparisons to car emissions and household energy consumption. Copyright ASCE 2008.
Resumo:
A mathematical model is developed to predict the energy consumption of a heavy vehicle. It includes the important factors of heavy-vehicle energy consumption, namely engine and drivetrain performances, losses due to accessories, aerodynamic drag, rolling resistance, road gradients, and driver behaviour. Novel low-cost testing methods were developed to determine engine and drivetrain characteristics. A simple drive cycle was used to validate the model. The model is able to predict the fuel use for a 371 tractor-semitrailer vehicle over a 4 km drive cycle within 1 per cent. This paper demonstrates that accurate and reliable vehicle benchmarking and model parameter measurement can be achieved without expensive equipment overheads, e.g. engine and chassis dynamometers.
Resumo:
There is increasing evidence that many of the mitochondrial DNA (mtDNA) databases published in the fields of forensic science and molecular anthropology are flawed. An a posteriori phylogenetic analysis of the sequences could help to eliminate most of the errors and thus greatly improve data quality. However, previously published caveats and recommendations along these lines were not yet picked up by all researchers. Here we call for stringent quality control of mtDNA data by haplogroup-directed database comparisons. We take some problematic databases of East Asian mtDNAs, published in the Journal of Forensic Sciences and Forensic Science International, as examples to demonstrate the process of pinpointing obvious errors. Our results show that data sets are not only notoriously plagued by base shifts and artificial recombination but also by lab-specific phantom mutations, especially in the second hypervariable region (HVR-II). (C) 2003 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Building integrated photovoltaics (BIPV) has potential of becoming the mainstream of renewable energy in the urban environment. BIPV has significant influence on the thermal performance of building envelope and changes radiation energy balance by adding or replacing conventional building elements in urban areas. PTEBU model was developed to evaluate the effect of photovoltaic (PV) system on the microclimate of urban canopy layer. PTEBU model consists of four sub-models: PV thermal model, PV electrical performance model, building energy consumption model, and urban canyon energy budget model. PTEBU model is forced with temperature, wind speed, and solar radiation above the roof level and incorporates detailed data of PV system and urban canyon in Tianjin, China. The simulation results show that PV roof and PV façade with ventilated air gap significantly change the building surface temperature and sensible heat flux density, but the air temperature of urban canyon with PV module varies little compared with the urban canyon of no PV. The PV module also changes the magnitude and pattern of diurnal variation of the storage heat flux and the net radiation for the urban canyon with PV increase slightly. The increase in the PV conversion efficiency not only improves the PV power output, but also reduces the urban canyon air temperature. © 2006.
Resumo:
The embodied energy (EE) and gas emissions of four design alternatives for an embankment retaining wall system are analyzed for a hypothetical highway construction project. The airborne emissions considered are carbon dioxide (CO 2), methane (CH 4), nitrous oxide (N 2O), sulphur oxides (SO X), and nitrogen oxides (NO X). The process stages considered in this study are the initial materials production, transportation of construction machineries and materials, machinery operation during installation, and machinery depreciations. The objectives are (1) to determine whether there are statistically significant differences among the structural alternatives; (2) to understand the relative proportions of impacts for the process stages within each design; (3) to contextualize the impacts to other aspects in life by comparing the computed EE values to household energy consumption and car emission values; and (4) to examine the validity of the adopted EE as an environmental impact indicator through comparison with the amount of gas emissions. For the project considered in this study, the calculated results indicate that propped steel sheet pile wall and minipile wall systems have less embodied energy and gas emissions than cantilever steel tubular wall and secant concrete pile wall systems. The difference in CO 2 emission for the retaining wall of 100 m length between the most and least environmentally preferable wall design is equivalent to an average 2.0 L family car being driven for 6.2 million miles (or 62 cars with a mileage of 10,000 miles/year for 10 years). The impacts in construction are generally notable and careful consideration and optimization of designs will reduce such impacts. The use of recycled steel or steel pile as reinforcement bar is effective in reducing the environmental impact. The embodied energy value of a given design is correlated to the amount of gas emissions. © 2011 American Society of Civil Engineers.
Resumo:
The increasing pressure on material availability, energy prices, as well as emerging environmental legislation is leading manufacturers to adopt solutions to reduce their material and energy consumption as well as their carbon footprint, thereby becoming more sustainable. Ultimately manufacturers could potentially become zero carbon by having zero net energy demand and zero waste across the supply chain. The literature on zero carbon manufacturing and the technologies that underpin it are growing, but there is little available on how a manufacturer undertakes the transition. Additionally, the work in this area is fragmented and clustered around technologies rather than around processes that link the technologies together. There is a need to better understand material, energy, and waste process flows in a manufacturing facility from a holistic viewpoint. With knowledge of the potential flows, design methodologies can be developed to enable zero carbon manufacturing facility creation. This paper explores the challenges faced when attempting to design a zero carbon manufacturing facility. A broad scope is adopted from legislation to technology and from low waste to consuming waste. A generic material, energy, and waste flow model is developed and presented to show the material, energy, and waste inputs and outputs for the manufacturing system and the supporting facility and, importantly, how they can potentially interact. Finally the application of the flow model in industrial applications is demonstrated to select appropriate technologies and configure them in an integrated way. © 2009 IMechE.
Resumo:
Just under half of all energy consumption in the UK today takes place indoors, and over a quarter within our homes. The challenges associated with energy security, climate change and sustainable consumption will be overcome or lost in existing buildings. A background analysis, and the scale of the engineering challenge for the next three to four decades, is described in this paper.
Resumo:
Just under half of all energy consumption in the UK today takes place indoors, and over a quarter within our homes. The challenges associated with energy security, climate change and sustainable consumption will be overcome or lost in our existing buildings. A background analysis, and the scale of the engineering challenge for the next three to four decades, is described in this paper.
Resumo:
The diversity of non-domestic buildings at urban scale poses a number of difficulties to develop models for large scale analysis of the stock. This research proposes a probabilistic, engineering-based, bottom-up model to address these issues. In a recent study we classified London's non-domestic buildings based on the service they provide, such as offices, retail premise, and schools, and proposed the creation of one probabilistic representational model per building type. This paper investigates techniques for the development of such models. The representational model is a statistical surrogate of a dynamic energy simulation (ES) model. We first identify the main parameters affecting energy consumption in a particular building sector/type by using sampling-based global sensitivity analysis methods, and then generate statistical surrogate models of the dynamic ES model within the dominant model parameters. Given a sample of actual energy consumption for that sector, we use the surrogate model to infer the distribution of model parameters by inverse analysis. The inferred distributions of input parameters are able to quantify the relative benefits of alternative energy saving measures on an entire building sector with requisite quantification of uncertainties. Secondary school buildings are used for illustrating the application of this probabilistic method. © 2012 Elsevier B.V. All rights reserved.
Resumo:
This paper investigates 'future-proofing' as an unexplored yet all-important aspect in the design of low-energy dwellings. It refers particularly to adopting lifecycle thinking and accommodating risks and uncertainties in the selection of fabric energy efficiency measures and low or zero-carbon technologies. Based on a conceptual framework for future-proofed design, the paper first presents results from the analysis of two 'best practice' housing developments in England; i.e., North West Cambridge in Cambridge and West Carclaze and Baal in St. Austell, Cornwall. Second, it examines the 'Energy and CO2 Emissions' part of the Code for Sustainable Homes to reveal which design criteria and assessment methods can be practically integrated into this established building certification scheme so that it can become more dynamic and future-oriented.Practical application: Future-proofed construction is promoted implicitly within the increasingly stringent building regulations; however, there is no comprehensive method to readily incorporate futures thinking into the energy design of buildings. This study has a three-fold objective of relevance to the building industry:Illuminating the two key categories of long-term impacts in buildings, which are often erroneously treated interchangeably:- The environmental impact of buildings due to their long lifecycles.- The environment's impacts on buildings due to risks and uncertainties affecting the energy consumption by at least 2050. This refers to social, technological, economic, environmental and regulatory (predictable or unknown) trends and drivers of change, such as climate uncertainty, home-working, technology readiness etc.Encouraging future-proofing from an early planning stage to reduce the likelihood of a prematurely obsolete building design.Enhancing established building energy assessment methods (certification, modelling or audit tools) by integrating a set of future-oriented criteria into their methodologies. © 2012 The Chartered Institution of Building Services Engineers.
Resumo:
This paper presents a review undertaken to understand the concept of 'future-proofing' the energy performance of buildings. The long lifecycles of the building stock, the impacts of climate change and the requirements for low carbon development underline the need for long-term thinking from the early design stages. 'Future-proofing' is an emerging research agenda with currently no widely accepted definition amongst scholars and building professionals. In this paper, it refers to design processes that accommodate explicitly full lifecycle perspectives and energy trends and drivers by at least 2050, when selecting energy efficient measures and low carbon technologies. A knowledge map is introduced, which explores the key axes (or attributes) for achieving a 'future-proofed' energy design; namely, coverage of sustainability issues, lifecycle thinking, and accommodating risks and uncertainties that affect the energy consumption. It is concluded that further research is needed so that established building energy assessment methods are refined to better incorporate future-proofing. The study follows an interdisciplinary approach and is targeted at design teams with aspirations to achieve resilient and flexible low-energy buildings over the long-term. © 2012 Elsevier Ltd.
Resumo:
Large digital chips use a significant amount of energy to broadcast a low-skew, multigigahertz clock to millions of latches located throughout the chip. Every clock cycle, the large aggregate capacitance of the clock network is charged from the supply and then discharged to ground. Instead of wasting this stored energy, it is possible to recycle the energy by controlling its delivery to another part of the chip using an on-chip dc-dc converter. The clock driver and switching converter circuits share many compatible characteristics that allow them to be merged into a single design and fully integrated on-chip. Our buck converter prototype, manufactured in 90-nm CMOS, provides a proof-of-concept that clock network energy can be recycled to other parts of the chip, thus lowering overall energy consumption. It also confirms that monolithic multigigahertz switching converters utilizing zero-voltage switching can be implemented in deep-submicrometer CMOS. With multigigahertz operation, fully integrated inductors and capacitors use a small amount of chip area with low losses. Combining the clock driver with the power converter can share the large MOSFET drivers necessary as well as being energy and space efficient. We present an analysis of the losses which we confirm by experimentally comparing the merged circuit with a conventional clock driver. © 2012 IEEE.
Resumo:
We live in an era of abundant data. This has necessitated the development of new and innovative statistical algorithms to get the most from experimental data. For example, faster algorithms make practical the analysis of larger genomic data sets, allowing us to extend the utility of cutting-edge statistical methods. We present a randomised algorithm that accelerates the clustering of time series data using the Bayesian Hierarchical Clustering (BHC) statistical method. BHC is a general method for clustering any discretely sampled time series data. In this paper we focus on a particular application to microarray gene expression data. We define and analyse the randomised algorithm, before presenting results on both synthetic and real biological data sets. We show that the randomised algorithm leads to substantial gains in speed with minimal loss in clustering quality. The randomised time series BHC algorithm is available as part of the R package BHC, which is available for download from Bioconductor (version 2.10 and above) via http://bioconductor.org/packages/2.10/bioc/html/BHC.html. We have also made available a set of R scripts which can be used to reproduce the analyses carried out in this paper. These are available from the following URL. https://sites.google.com/site/randomisedbhc/.
Resumo:
The aim of this study was to explore how the remote control of appliances/lights (active energy management system) affected household well-being, compared to in-home displays (passive energy management system). A six-week exploratory study was conducted with 14 participants divided into the following three groups: active; passive; and no equipment. The effect on well-being was measured through thematic analysis of two semi-structured interviews for each participant, administered at the start and end of the study. The well-being themes were based on existing measures of Satisfaction and Affect. The energy demand for each participant was also measured for two weeks without intervention, and then compared after four weeks with either the passive or active energy management systems. These measurements were used to complement the well-being analysis. Overall, the measure of Affect increased in the passive group but Satisfaction decreased; however, all three measures on average decreased in the active group. The measured energy demand also highlighted a disconnect between well-being and domestic energy consumption. The results point to a need for further investigation in this field; otherwise, there is a risk that nationally implemented energy management solutions may negatively affect our happiness and well-being. © 2013 Elsevier Ltd.