973 resultados para Endemic strains
Resumo:
Previous morphological and cytological analyses have suggested that the arctic shrew (Sorex arcticus) as currently recognized may be two distinct species. Specifically, those studies demonstrated considerable differentiation between the putative subspecies S. a. maritimensis and one or both of the other two subspecies, S. a. arcticus and S. a. laricorum. Phylogenetic analysis of 546 base pairs of cytochrome b sequence data from 10 arctic shrews from across Canada indicates that maritimensis is the sister-group to arcticus + laricorum. Furthermore, there is considerable genetic divergence between maritimensis and the other two putative subspecies (similar to8-9%; Kimura's two-parameter distance). Given that maritimensis and arcticus + laricorum appear to be reciprocally monophyletic clades with considerable genetic divergence (i.e., greater than that between other recognized pairs of sister-species within the S. araneus-arcticus group), we propose that S. maritimensis be recognized as a distinct species. The proportion of third-position transversion substitutions between S. arcticus and S. maritimensis suggests that these two species shared a common ancestor approximately 2.4 million years ago.
Resumo:
The methylotrophic yeast Pichia pastoris is widely used for the expression of heterologous enzymes. While the purity of the desired expression product is of major importance for many applications, we found that recombinant enzymes produced in methanol medium were contaminated by a 37-kDa endogenous yeast protease. This enzyme was completely inhibited by phenylmethanesulfonyl fluoride (PMSF) but not by 1,10-phenanthroline, EDTA, and pepstatin A, suggesting the nature of a serine protease. Its secretion was abolished in P. pastoris strains GS115 and KM71 by specific mutagenesis of a subtilisin gene (SUB2) but not by inactivation of the gene encoding vacuolar proteinase B (PRB). Bioinformatic comparisons of Sub2 protein with subtilisins from other fungal genomes and phylogenetic analyses indicated that this enzyme is not an orthologue of the vacuolar protease cerevisin generally present in yeasts but is more closely related to another putative subtilisin found in a small number of yeast genomes. During growth of P. pastoris, Sub2 was produced as a secreted enzyme at a concentration of 10 microg/ml of culture supernatant after overexpression of the full-length SUB2 gene. During fermentative production of recombinant enzymes in methanol medium, 1 ml of P. pastoris culture supernatant was found to contain approximately 3 ng of Sub2, while the enzyme was not detected during growth in a medium containing glycerol as a carbon source. The mutant strain GS115-sub2 was subsequently used as a host for the production of recombinant proteases without endogenous subtilisin contamination.
Resumo:
We have identified new malaria vaccine candidates through the combination of bioinformatics prediction of stable protein domains in the Plasmodium falciparum genome, chemical synthesis of polypeptides, in vitro biological functional assays, and association of an antigen-specific antibody response with protection against clinical malaria. Within the predicted open reading frame of P. falciparum hypothetical protein PFF0165c, several segments with low hydrophobic amino acid content, which are likely to be intrinsically unstructured, were identified. The synthetic peptide corresponding to one such segment (P27A) was well recognized by sera and peripheral blood mononuclear cells of adults living in different regions where malaria is endemic. High antibody titers were induced in different strains of mice and in rabbits immunized with the polypeptide formulated with different adjuvants. These antibodies recognized native epitopes in P. falciparum-infected erythrocytes, formed distinct bands in Western blots, and were inhibitory in an in vitro antibody-dependent cellular inhibition parasite-growth assay. The immunological properties of P27A, together with its low polymorphism and association with clinical protection from malaria in humans, warrant its further development as a malaria vaccine candidate.
Resumo:
To explore the discriminatory power of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for detecting subtle differences in isogenic isolates, we tested isogenic strains of Staphylococcus aureus differing in their expression of resistance to methicillin or teicoplanin. More important changes in MALDI-TOF MS spectra were found with strains differing in methicillin than in teicoplanin resistance. In comparison, very minor or no changes were recorded in pulsed-field gel electrophoresis profiles or peptidoglycan muropeptide digest patterns of these strains, respectively. MALDI-TOF MS might be useful to detect subtle strain-specific differences in ionizable components released from bacterial surfaces and not from their peptidoglycan network.
Resumo:
Fauna of phlebotomine sand flies (Diptera, Psychodidae) in areas with endemic American cutaneous leishmaniasis in the State of Mato Grosso do Sul, Brazil. The aim of this study was to investigate the ecological aspects of the main vectors of American cutaneous leishmaniasis (ACL) in four monitoring stations situated in the municipalities of Naviraí, Nova Andradina, Novo Horizonte do Sul and Rio Verde de Mato Grosso. For each monitoring station, the captures of sand flies were undertaken each month from July 2008 to June 2010 using CDC and Shannon traps. The CDC traps were installed simultaneously for three consecutive nights in three collection sites: intradomicile, peridomicile and edge of the forest. A Shannon trap was installed from dusk to 10 pm, inside the forest, one night per month. A total of 7,651 sand flies belonging to nine genera and twenty-nine species were captured. Nyssomyia neivai (52.95%), Psathyromyia hermanlenti (10.91%), Psathyromyia runoides (9.16%), Nyssomyia whitmani (7.95%), Psathyromyia aragaoi (4. 89%), Nyssomyia antunesi (3.14%) and Evandromyia bourrouli (2.20%) were the most frequent species. Approximately 65% of the sand flies were collected in the forest environment. The municipalities presented significantly different indexes of species diversity. Naviraí presented the lowest species diversity index, however, it showed the highest abundance. Novo Horizonte do Sul had the highest species diversity index, but the lowest abundance (< 5%). It is noteworthy the occurrence of vector species of Leishmania in the areas studied, especially in Naviraí, where Ny. neivai presented high frequencies which may explain the increased number of ACL cases in this municipality.
Resumo:
Cell-to-cell signaling involving N-acyl-homoserine lactone compounds termed autoinducers (AIs) is instrumental to virulence factor production and biofilm development by Pseudomonas aeruginosa. In order to determine the importance of cell-to-cell signaling during the colonization of mechanically ventilated patients, we collected 442 P. aeruginosa pulmonary isolates from 13 patients. Phenotypic characterization showed that 81% of these isolates produced the AI-dependent virulence factors elastase, protease, and rhamnolipids. We identified nine genotypically distinct P. aeruginosa strains. Six of these strains produced AIs [N-butanoyl-homoserine lactone or N-(3-oxo-dodecanoyl)-homoserine lactone] and extracellular virulence factors (elastase, total exoprotease, rhamnolipid, hydrogen cyanide, or pyocyanin) in vitro. Three of the nine strains were defective in the production of both AIs and extracellular virulence factors. Two of these strains had mutational defects in both the lasR and rhlR genes, which encode the N-acyl-homoserine lactone-dependent transcriptional regulators LasR and RhlR, respectively. The third of these AI-deficient strains was only mutated in the lasR gene. Our observations suggest that most, but not all, strains colonizing intubated patients are able to produce virulence factors and that mutations affecting the cell-to-cell signaling circuit are preferentially located in the transcriptional regulator genes.
Resumo:
Selected strains of fluorescent pseudomonads suppress various plant diseases caused by soil-borne pathogenic fungi, by a blend of several mechanisms including aggressive root colonization, antibiosis, competition for nutrients, induction of resistance in the plant, and enzymatic attack of the pathogen. These traits are amenable to genetic analysis and, therefore, to modification by genetic engineering. Biocontrol activities of Pseudomonas spp. have been enhanced in two ways: (i) by overexpression of traits known to involved in diseaese suppression, and (ii) by introduction of additional beneficial traits into strains having basal biocontrol activities. Under experimental conditions in microcosms, a number of genetically modified Pseudomonas strains have given promising results. It remains to be seen whether such strains will be superior to the best naturally occurring strains, applied singly or in combination, under greenhouse and field conditions.
Resumo:
Staphylococcus aureus, especially when it is methicillin resistant, has been recognised as a major cause of nosocomial and community-acquired infections. It has also been shown that certain strains were able to cause clonal epidemics whereas others showed a more incidental occurrence. On the basis of this behavioural distinction, a genetic feature underlying this difference in epidemicity can be assumed. Understanding the difference will not only contribute to the development of markers for the identification of epidemic strains but will also shed light on the evolution of clones. Genomes of strains from two independent collections (n=18 and n=10 strains) were analysed. Both collections were composed of carefully selected, genetically diverse strains with clinically well-defined epidemic and sporadic behaviour. Comparative genome hybridisation (CGH) was performed using an Agilent array for one collection (up to 11 probes per open reading frame - ORF), and an Affymetrix array for the other (up to 30 probes per ORF). Presence and absence information of probe homologues and ORFs was taken for analysis of molecular variance (AMOVA) at the strain and behaviour levels. Not a single probe showed 100% concordant differences between epidemic and sporadic strains. Moreover, probe differences between groups were always smaller than those within groups. This was also true, when the analysis was focussed on presence versus absence of ORF's or when probe information was transformed into allelic profiles. These findings present strong evidence against the presence or absence of a single common specific genetic factor differentiating epidemic from sporadic S. aureus clones.
Resumo:
Staphylococcus aureus is a major bovine mastitis pathogen. Although the reported antimicrobial resistance was generally low, the emergence of new genetic clusters in bovine mastitis requires examination of the link between antimicrobial resistance and genotypes. Here, amplified fragment length polymorphism (AFLP) profiles and standard antimicrobial resistance profiles were determined in order to characterize a total of 343 S. aureus cow mastitis isolates from two geographically close regions of Switzerland and France. AFLP profiles revealed similar population compositions in the two regions, with 4 major clusters (C8, C20, C97, and C151), but the proportions of isolates in each cluster significantly diverged between the two countries (P = 9.2 × 10⁻⁹). Antimicrobial resistance was overall low (< 5% resistance to all therapeutically relevant molecules), with the exception of penicillin resistance, which was detected in 26% of the isolates. Penicillin resistance proportions differed between clusters, with only 1 to 2% of resistance associated with C20 and C151 and up to 70% associated with bovine C97. The prevalence of C20 and C8 was unexpectedly high and requires further investigation into the mechanism of adaptation to the bovine host. The strong association of penicillin resistance with few clusters highlights the fact that the knowledge of local epidemiology is essential for rational choices of antimicrobial treatment in the absence of susceptibility testing. Taken together, these observations argue in favor of more routine scrutiny of antimicrobial resistance and antibiotic-resistant clones in cattle and the farm environment.
Resumo:
BACKGROUND: The mouse inbred line C57BL/6J is widely used in mouse genetics and its genome has been incorporated into many genetic reference populations. More recently large initiatives such as the International Knockout Mouse Consortium (IKMC) are using the C57BL/6N mouse strain to generate null alleles for all mouse genes. Hence both strains are now widely used in mouse genetics studies. Here we perform a comprehensive genomic and phenotypic analysis of the two strains to identify differences that may influence their underlying genetic mechanisms. RESULTS: We undertake genome sequence comparisons of C57BL/6J and C57BL/6N to identify SNPs, indels and structural variants, with a focus on identifying all coding variants. We annotate 34 SNPs and 2 indels that distinguish C57BL/6J and C57BL/6N coding sequences, as well as 15 structural variants that overlap a gene. In parallel we assess the comparative phenotypes of the two inbred lines utilizing the EMPReSSslim phenotyping pipeline, a broad based assessment encompassing diverse biological systems. We perform additional secondary phenotyping assessments to explore other phenotype domains and to elaborate phenotype differences identified in the primary assessment. We uncover significant phenotypic differences between the two lines, replicated across multiple centers, in a number of physiological, biochemical and behavioral systems. CONCLUSIONS: Comparison of C57BL/6J and C57BL/6N demonstrates a range of phenotypic differences that have the potential to impact upon penetrance and expressivity of mutational effects in these strains. Moreover, the sequence variants we identify provide a set of candidate genes for the phenotypic differences observed between the two strains.
Resumo:
The genetic determinants and phenotypic traits which make a Staphylococcus aureus strain a successful colonizer are largely unknown. The genetic diversity and population structure of 133 S. aureus isolates from healthy, generally risk-free adult carriers were investigated using four different typing methods: multilocus sequence typing (MLST), amplified fragment length polymorphism analysis (AFLP), double-locus sequence typing (DLST), and spa typing were compared. Carriage isolates displayed great genetic diversity which could only be revealed fully by DLST. Results of AFLP and MLST were highly concordant in the delineation of genotypic clusters of closely related isolates, roughly equivalent to clonal complexes. spa typing and DLST provided considerably less phylogenetic information. The resolution of spa typing was similar to that of AFLP and inferior to that of DLST. AFLP proved to be the most universal method, combining a phylogeny-building capacity similar to that of MLST with a much higher resolution. However, it had a lower reproducibility than sequencing-based MLST, DLST, and spa typing. We found two cases of methicillin-resistant S. aureus colonization, both of which were most likely associated with employment at a health service. Of 21 genotypic clusters detected, 2 were most prevalent: cluster 45 and cluster 30 each colonized 24% of the carrier population. The number of bacteria found in nasal samples varied significantly among the clusters, but the most prevalent clusters were not particularly numerous in the nasal samples. We did not find much evidence that genotypic clusters were associated with different carrier characteristics, such as age, sex, medical conditions, or antibiotic use. This may provide empirical support for the idea that genetic clusters in bacteria are maintained in the absence of adaptation to different niches. Alternatively, carrier characteristics other than those evaluated here or factors other than human hosts may exert selective pressure maintaining genotypic clusters.
Resumo:
The UL144 open reading frame found in clinical isolates of human CMV (HCMV) encodes a structural homologue of the herpesvirus entry mediator, a member of the TNFR superfamily. UL144 is a type I transmembrane glycoprotein that is expressed early after infection of fibroblasts; however, it is retained intracellularly. A YXXZ motif in the highly conserved cytoplasmic tail contributes to UL144 subcellular distribution. The finding that no known ligand of the TNF family binds UL144 suggests that its mechanism of action is distinct from other known viral immune evasion genes. Specific Abs to UL144 can be detected in the serum of a subset of HCMV seropositive individuals infected with HIV. This work establishes a novel molecular link between the TNF superfamily and herpesvirus that may contribute to the ability of HCMV to escape immune clearance.
Resumo:
Social groups face a fundamental problem of overcoming selfish individuals capable of destroying cooperation. In the social amoeba Dictyostelium discoideum, there is evidence that some clones ('cheaters') contribute disproportionately to the viable spores in a fruiting body while avoiding the dead stalk cell fate. It remains unclear, however, whether this cheating is actually the product of selection. Here, I report the results of an experimental evolution study designed to test whether clones of D. discoideum will evolve resistance to cheating in the laboratory with genetic variation created only through spontaneous mutation. Two strains, one green fluorescent protein (GFP)-labelled and one wild-type, were allowed to grow and develop together before the wild-type strain was removed and replaced with a naïve strain evolving in parallel. Over the course of 10 social generations, the GFP-labelled strain reliably increased its representation in the spores relative to control populations that had never experienced the competitor. This competitive advantage extended to the non-social, vegetative growth portion of the life cycle, but not to pairwise competition with two other strains. These results indicate strong antagonism between strains, mediated by ample mutational variation for cheating and also suggest that arms races between strains in the wild may be common.
Resumo:
In the last decades, the use of plant growth-promoting rhizobacteria has become an alternative to improve crop production. Rhizobium leguminosarum biovar trifolii is one of the most promising rhizobacteria and is even used with non-legume plants. This study investigated in vitro the occurrence of plant growth-promoting characteristics in several indigenous R. leguminosarum biovar trifolii isolated from soils in the State of Rio Grande do Sul, Brazil. Isolates were obtained at 11 locations and evaluated for indoleacetic acid and siderophore production and inorganic phosphate solubilization. Ten isolates were also molecularly characterized and tested for antagonism against a phytopathogenic fungus and for plant growth promotion of rice seedlings. Of a total of 252 isolates, 59 produced indoleacetic acid, 20 produced siderophores and 107 solubilized phosphate. Some degree of antagonism against Verticillium sp. was observed in all tested isolates, reducing mycelial growth in culture broth. Isolate AGR-3 stood out for increasing root length of rice seedlings, while isolate ELD-18, besides increasing root length in comparison to the uninoculated control, also increased the germination speed index, shoot length, and seedling dry weight. These results confirm the potential of some strains of R. leguminosarum biovar trifolii as plant growth-promoting rhizobacteria.