949 resultados para Efficiency of cleaning
Resumo:
It was evaluated the energetic efficiency and operational parameters of a windrowing and prismatic baling, both from CASE NEW HOLLAND® operations in sugarcane vegetal residues (green leaves, dry leaves and tops) picked mechanically in green cane. The area belongs to COSTA PINTO MILL (COSAN® Group) which was harvested mechanically by combines in the State of Sao Paulo, Brazil. The geographic location of the area is: Latitude 22°40'30S, Longitude 47°36'38W and Altitude of 605m. The variety was RB 82-5336, planted in 1.40m row spacing, with 78t.ha-1 yield. The vegetal residues analysis obtained 69.93% of leaves, 21.44% of stalks fractions, 2.27% of tops and 6.36% of total strange matter. The vegetal residues values were: gross heat of 18.43MJ.kg-1, low heat of 17.00MJ.kg'1 and useful heat of 12.94MJ.kg-1. The vegetal residues average energetic potential was 342.48GJ.ha-1. The treatments were simple, double and triple windrowing. The use of the rake and prismatic baler to pick up the residues was viable. The simple windrowing treatment presented the best results: effective capacity of 83.06t.ha-1, fuel consumption of 0.18L.t -1 and 99.95% of positive energetic efficiency. The bales obtained in the treatment of triple windrowing presented the largest specific mass average of 221.11kg.m-3. The soil amount in the bales increased with successive windrowing. The baling operation in the triple windrowing treatment obtained better results, presenting the effective capacities of 20.29t.h -1 and 1.45ha.h-1 and fuel consumption of for baled in 1.37L.t-1. The high total energetic efficiency of 99.53% indicates that is technically viable the withdrawal of the vegetal residues.
Resumo:
Optical microscopy and morphometric analysis were used in this study to evaluate, in vitro, the cleaning of the apical region in root canals with mild or moderate curvatures subjected to biomechanical preparation with a rotary system, as well as to assess the amount of extruded material to the periapical area. Lateral incisors (n = 32), 16 with curvature angles smaller or equal to 10° (GI) and 16 between 11° and 25° angles (GII) were submitted to Hero 642 rotary instrumentation with different surgical diameters: (A) 30.02 and (B) 45.02. Irrigation was performed at each change of instrument with 5 mL of ultrapure Milli-Q water and the extruded material through the apical foramen was collected. Root cross-sections were subjected to histological analysis by optical microscopy (×40) and the images were evaluated morphometrically using the Image Tool software. Quantification of the extruded material was performed by weighing after liquid evaporation. ANOVA showed no statistically significant differences (p>0.05) among the groups with respect to the procedures used to clean the apical region. Considering the amount of extruded material, the Tukey's HSD showed that canals with mild curvature prepared with the 45.02 surgical diameter showed significantly higher values (p<0.05) that those of the other groups, which were similar between themselves (p>0.05). In conclusion, the effect of cleaning the apical region did not differ in the groups, considering root curvature and the surgical diameter of instruments used for apical preparation. The amount of extruded material was greater in canals with mild curvature that were prepared with the 45.02 surgical instrument diameter.
Resumo:
Bos indicus cattle, the preferred genetic group in tropical climates, are characterized by having a lower reproductive efficiency than Bos taurus. The reasons for the poorer reproductive efficiency of the Bos indicus cows include longer lengths of gestation and postpartum anestrus, a short length of estrous behavior with a high incidence of estrus occurring during the dark hours, and puberty at older age and at a higher percentage of body weight relative to mature body weight. Moreover, geography, environment, economics, and social traditions are factors contributing for a lower use of reproductive biotechnologies in tropical environments. Hormonal protocols have been developed to resolve some of the reproductive challenges of the Bos indicus cattle and allow artificial insemination, which is the main strategy to hasten genetic improvement in commercial beef ranches. Most of these treatments use exogenous sources of progesterone associated with strategies to improve the final maturation of the dominant follicle, such as temporary weaning and exogenous gonadotropins. These treatments have caused large impacts on reproductive performance of beef cattle reared under tropical areas. Copyright © 2011 O. G. Sá Filho and J. L. M. Vasconcelos.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The aim of this study was to assess the influence of the quantity of coloring agent on the bleaching efficiency of gels containing 35% H2O2. Sixty human third molars were sectioned mesiodistally, darkened in a coffee solution and sectioned in the occlusal-cervical direction, resulting in mesial (not bleached) and distal halves (bleached). They were distributed into three groups: Whiteness HP, Total Bleach, and Whiteform Perox Red Gel; and subdivided into four sub-groups: no coloring agent, manufacturer's standard, double the standard, and triple the standard. The gels were activated with light-ermitting diode/laser appliances. The images were analyzed with the Adobe Photoshop program (deltaEL*a*b*). The variation was submitted to the ANOVA test (two factors: type of gel and quantity of coloring agent) and Tukey test. Differences were observed for the quantity of coloring agent. The mean (+/-SD) was determined for each quantity of coloring used: no coloring agent -6.85 (+/-2.26)a, manufacturer's standard -794 (+/-2.55)ab, double the standard -8.65 (+/-2.47)b, triple the standard -9.05 (+/-2.72)b. In conclusion, the standard quantity of coloring agent did not provide significantly more intense bleaching than when it was completely absent. The use of double and triple the amount provided greater bleaching than that observed for the gel without coloring agent. No significant differences were observed between the tested gels.
Resumo:
This article evaluates the efficiency of Brazil's industrial sectors from 1996 to 2009, taking into account energy consumption and respective contributions to the country's economic and social aspects. This analysis used a mathematical programming method called Data Envelopment Analysis (DEA), which enabled, from the SBM model and the window analysis, to evaluate the ability of industries to reduce energy consumption and fossil-fuel CO2 emissions (inputs), as well as to increase the Gross Domestic Product (GDP) by sectors, the persons employed and personnel expenses (outputs). The results of this study indicated that the Textile sector is the most efficient industrial sector in Brazil, according to the variables used, followed by these sectors: Foods and Beverages, Chemical, Mining, Paper and Pulp, Nonmetallic and Metallurgical.
Efficiency and costless of a long-term physical exercise program to nom-medicated hypertensive males
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
INVESTIGATION INTO CURRENT EFFICIENCY FOR PULSE ELECTROCHEMICAL MACHINING OF NICKEL ALLOY Yu Zhang, M.S. University of Nebraska, 2010 Adviser: Kamlakar P. Rajurkar Electrochemical machining (ECM) is a nontraditional manufacturing process that can machine difficult-to-cut materials. In ECM, material is removed by controlled electrochemical dissolution of an anodic workpiece in an electrochemical cell. ECM has extensive applications in automotive, petroleum, aerospace, textile, medical, and electronics industries. Improving current efficiency is a challenging task for any electro-physical or electrochemical machining processes. The current efficiency is defined as the ratio of the observed amount of metal dissolved to the theoretical amount predicted from Faraday’s law, for the same specified conditions of electrochemical equivalent, current, etc [1]. In macro ECM, electrolyte conductivity greatly influences the current efficiency of the process. Since there is a certain limit to enhance the conductivity of the electrolyte, a process innovation is needed for further improvement in current efficiency in ECM. Pulse electrochemical machining (PECM) is one such approach in which the electrolyte conductivity is improved by electrolyte flushing in pulse off-time. The aim of this research is to study the influence of major factors on current efficiency in a pulse electrochemical machining process in macro scale and to develop a linear regression model for predicting current efficiency of the process. An in-house designed electrochemical cell was used for machining nickel alloy (ASTM B435) by PECM. The effects of current density, type of electrolyte, and electrolyte flow rate, on current efficiency under different experimental conditions were studied. Results indicated that current efficiency is dependent on electrolyte, electrolyte flow rate, and current density. Linear regression models of current efficiency were compared with twenty new data points graphically and quantitatively. Models developed were close enough to the actual results to be reliable. In addition, an attempt has been made in this work to consider those factors in PECM that have not been investigated in earlier works. This was done by simulating the process by using COMSOL software. However, it was found that the results from this attempt were not substantially different from the earlier reported studies.
Resumo:
The luminous efficiency of organic light-emitting diodes based on poly(N-vinylcarbazole), PVK, was improved by adding fac-[ClRe(CO)(3)(bpy)], bpy = 2,2`-bipyridine, to PVK host. Emissive layers with various Re(I) complex/host ratio were employed and optoelectronic properties were compared with the single PVK device. The single PVK device exhibits a characteristic electroluminescence with blue emission, lambda(max) 420 nm, assigned to the PVK excimer. On the other hand, the intense and broad band at lambda(max) 580 nm of the Re(I) complex/PVK OLEDs is ascribed to the metal-to-ligand charge transfer excited state emission of fac-[ClRe(CO)(3)(bpy)]. At 30 V, the device luminous efficiency increased from 16 mcd/A for the single PVK device to 211 mcd/A for the 11% (w/w) Re(I) complex/PVK OLED, in which fac-[ClRe(CO)(3)(bpy)] acts as an electron-trap in PVK films. The device current is space-charge limited and exhibits typical emissive layer thickness dependence. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Liquid biofuels can be produced from a variety of feedstocks and processes. Ethanol and biodiesel production processes based on conventional raw materials are already commercial, but subject to further improvement and optimization. Biofuels production processes using lignocellulosic feedstocks are still in the demonstration phase and require further R&D to increase efficiency. A primary tool to analyze the efficiency of biofuels production processes from an integrated point of view is offered by exergy analysis. To gain further insight into the performance of biofuels production processes, a simulation tool, which allows analyzing the effect of process variables on the exergy efficiency of stages in which chemical or biochemical reactions take place, were implemented. Feedstocks selected for analysis were parts or products of tropical plants such as the fruit and flower stalk of banana tree, palm oil, and glucose syrups. Results of process simulation, taking into account actual process conditions, showed that the exergy efficiencies of the acid hydrolysis of banana fruit and banana pulp were in the same order (between 50% and 60%), lower than the figure for palm oil transesterification (90%), and higher that the exergy efficiency of the enzymatic hydrolysis of flower stalk (20.3%). (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Objective: To evaluate the masticatory efficiency of patients rehabilitated with conventional dentures (CDs) or implant-retained mandibular overdentures. Background: Despite the evident benefits of implants on mastication as assessed by subjective patient-based outcomes, the extent of implant overdenture treatment effect on food comminution is not well established. Materials and methods: A randomised clinical trial was carried out with 29 completely edentulous patients divided into two groups. The first group was rehabilitated with a mandibular overdenture retained by two splinted implants with bar-clip system, while the second group was rehabilitated with a mandibular CD. Both groups also were rehabilitated with maxillary CDs. Masticatory efficiency and patient satisfaction were assessed 3 months after denture insertion. Masticatory efficiency was evaluated through the colorimetric method with the beads as the artificial test-food. Comparisons for masticatory efficiency and patient satisfaction were performed using Student's t-test (alpha = 0.05). Results: No significant statistical difference was found for masticatory efficiency (p = 0.198). Patient overall satisfaction was significantly higher for the mandibular overdenture (p < 0.001). In addition, mandibular overdenture patients were significantly more satisfied with chewing experience (p < 0.05) and retention of the lower denture (p < 0.005). Conclusion: The results of this study suggest that mandibular overdenture significantly improves chewing experience, although limited effect on masticatory efficiency has been observed.
Resumo:
Efficiency in front-crawl stroke has been inferred primarily by means of the analysis of arm actions, specifically, stroke frequency and stroke length. The objective of the present study was to investigate whether swimming efficiency could be better assessed in children still learning the front-crawl stroke by analyzing the movement pattern as a whole. Forty-two children enrolled in private swimming programs volunteered to participate in the study. The task consisted of swimming 30 m as fast as possible. Three experts analyzed the movement pattern of the participants using a checklist. Both stroke frequency and stroke length were calculated. The correlation coefficients between the time taken to swim and both the stroke frequency and stroke length were not significant, but the total and components of the checklist scores were. Results indicate that the swimming efficiency of children learning the front-crawl stroke can be better assessed by analyzing their whole movement pattern.
Resumo:
Similar to other photosynthetic microorganisms, the cyanobacterium Arthrospira platensis can be used to produce pigments, single cell proteins, fatty acids (which can be used for bioenergy), food and feed supplements, and biofixation of CO2. Cultivation in a specifically designed tubular photobioreactor is suitable for photosynthetic biomass production, because the cultivation area can be reduced by distributing the microbial cells vertically, thus avoiding loss of ammonia and CO2. The aim of this study was to investigate the influence of light intensity and dilution rate on the photosynthetic efficiency and CO2 assimilation efficiency of A. platensis cultured in a tubular photobioreactor in a continuous process. Urea was used as a nitrogen source and CO2 as carbon source and for pH control. Steady-state conditions were achieved in most of the runs, indicating that continuous cultivation of this cyanobacterium in a tubular photobioreactor could be an interesting alternative for the large-scale fixation of CO2 to mitigate the greenhouse effect while producing high protein content biomass.