903 resultados para ETHYLENE-GLYCOL DIMETHACRYLATE
Resumo:
This thesis describes the preparation of polymersomes from poly(ethylene glycol)-block-polycarbonate (PEG-PC) copolymers functionalized with pendant coumarin groups. Coumarin groups undergo photo-reversible dimerization when irradiated with specific ultraviolet wavelengths, so they can be used to prepare polymers with photo-responsive properties. In this case, the pendant coumarin groups enable stabilization of the polymersome membrane through photo-crosslinking of the hydrophobic block. Initially, several novel cinnamoyl and coumarin functionalized cyclic carbonate monomers were synthesized using ester, ether, or amide linkages. While the homopolymerization of these functionalized monomers proved challenging due to their high melting points, both cinnamoyl and coumarin functionalized monomers were successfully copolymerized with trimethylene carbonate (TMC) at 100 ℃ using a catalyst-free melt polymerization process where the TMC doubled as a solvent for the higher melting point monomer. Using this system, polycarbonate copolymers with up to 33% incorporation of the functionalized monomers were prepared. In addition, an investigation of some anomalous polymerization results identified previously unreported triethylamine-based catalysts for the melt polymerization of carbonate monomers. These studies also demonstrated that the catalyst-free polymerization of TMC occurs faster and at lower temperatures than previously reported. Subsequently, the photo-crosslinking of cinnamoyl and coumarin functionalized polycarbonates was compared and coumarin was identified as the more effective crosslinking agent when using 300-400 nm UV. An investigation of the photo-reversibility of the coumarin dimerization revealed no discernible change in the properties of crosslinked networks, but rapid photo-reversion in dilute solutions. The photo-crosslinking and photo-reversion kinetics of the coumarin functionalized polycarbonates were determined to be second-order in both cases. Finally, the self-assembly of PEG-PC diblock copolymers functionalized with coumarin was examined and both reverse solvent evaporation and solvent displacement were found to induce self-assembly, with hydrophilic mass fractions (f-factors) of 12-28% resulting in the formation of solid microparticles and nanoparticles and f-factors of 33-43% resulting in the formation of polymersomes. The stabilization of these polymersome membranes through photo-initiator-free photo-crosslinking was demonstrated with the crosslinking allowing polymersomes to withstand centrifugation at 12,000 x g. In addition, the encapsulation of calcein, as a model small molecule drug, in the stabilized polymersomes was successfully demonstrated using confocal microscopy.
Resumo:
Sensors for real-time monitoring of environmental contaminants are essential for protecting ecosystems and human health. Refractive index sensing is a non-selective technique that can be used to measure almost any analyte. Miniaturized refractive index sensors, such as silicon-on-insulator (SOI) microring resonators are one possible platform, but require coatings selective to the analytes of interest. A homemade prism refractometer is reported and used to characterize the interactions between polymer films and liquid or vapour-phase analytes. A camera was used to capture both Fresnel reflection and total internal reflection within the prism. For thin-films (d = 10 μm - 100 μm), interference fringes were also observed. Fourier analysis of the interferogram allowed for simultaneous extraction of the average refractive index and film thickness with accuracies of ∆n = 1-7 ×10-4 and ∆d < 3-5%. The refractive indices of 29 common organic solvents as well as aqueous solutions of sodium chloride, sucrose, ethylene glycol, glycerol, and dimethylsulfoxide were measured at λ = 1550 nm. These measurements will be useful for future calibrations of near-infrared refractive index sensors. A mathematical model is presented, where the concentration of analyte adsorbed in a film can be calculated from the refractive index and thickness changes during uptake. This model can be used with Fickian diffusion models to measure the diffusion coefficients through the bulk film and at the film-substrate interface. The diffusion of water and other organic solvents into SU-8 epoxy was explored using refractometry and the diffusion coefficient of water into SU-8 is presented. Exposure of soft baked SU-8 films to acetone, acetonitrile and methanol resulted in rapid delamination. The diffusion of volatile organic compound (VOC) vapours into polydimethylsiloxane and polydimethyl-co-polydiphenylsiloxane polymers was also studied using refractometry. Diffusion and partition coefficients are reported for several analytes. As a model system, polydimethyl-co-diphenylsiloxane films were coated onto SOI microring resonators. After the development of data acquisition software, coated devices were exposed to VOCs and the refractive index response was assessed. More studies with other polymers are required to test the viability of this platform for environmental sensing applications.
Resumo:
Abstract - This study investigates the effect of solid dispersions prepared from of polyethylene glycol (PEG) 3350 and 6000 Da alone or combined with the non-ionic surfactant Tween 80 on the solubility and dissolution rate of a poorly soluble drug eprosartan mesylate (ESM) in attempt to improve its bioavailability following its oral administration.
INTRODUCTION
ESM is a potent anti-hypertension [1]. It has low water solubility and is classified as a Class II drug as per the Biopharmaceutical Classification Systems (BCS) leading to low and variable oral bioavailability (approximately 13%). [2]. Thus, improving ESM solubility and/or dissolution rate would eventually improve the drug bioavailability. Solid dispersion is widely used technique to improve the water solubility of poorly water-soluble drugs employing various biocompatible polymers. In this study, we aimed to enhance the solubility and dissolution of EMS employing solid dispersion (SD) formulated from two grades of poly ethylene glycol (PEG) polymers (i.e. PEG 3350 & PEG 6000 Da) either individually or in combination with Tween 80.
MATERIALS AND METHODS
ESM SDs were prepared by solvent evaporation method using either PEG 3350 or PEG 6000 at various (drug: polymer, w/w) ratios 1:1, 1:2, 1:3, 1:4, 1:5 alone or combined with Tween 80 added at fixed percentage of 0.1 of drug by weight?. Physical mixtures (PMs) of drug and carriers were also prepared at same ratios. Drug solid dispersions and physical mixtures were characterized in terms of drug content, drug dissolution using dissolution apparatus USP II and assayed using HPLC method. Drug dissolution enhancement ratio (ER %) from SD in comparison to the plain drug was calculated. Drug-polymer interactions were evaluated using Differential Scanning Calorimetry (DSC) and FT-IR.
RESULTS AND DISCUSSION
The in vitro solubility and dissolution studies showed SDs prepared using both polymers produced a remarkable improvement (p<0.05) in comparison to the plain drug which reached around 32% (Fig. 1). The dissolution enhancement ratio was polymer type and concentration-dependent. Adding Tween 80 to the SD did not show further dissolution enhancement but reduced the required amount of the polymer to get the same dissolution enhancement. The DSC and FT-IR studies indicated that using SD resulted in transformation of drug from crystalline to amorphous form.
CONCLUSIONS
This study indicated that SDs prepared by using both polymers i.e. PEG 3350 and PEG 6000 improved the in-vitro solubility and dissolution of ESM remarkably which may result in improving the drug bioavailability in vivo.
Acknowledgments
This work is a part of MSc thesis of O.M. Ali at the Faculty of Pharmacy, Aleppo University, Syria.
REFERENCES
[1] Ruilope L, Jager B: Eprosartan for the treatment of hypertension. Expert Opin Pharmacother 2003; 4(1):107-14
[2] Tenero D, Martin D, Wilson B, Jushchyshyn J, Boike S, Lundberg, D, et al. Pharmacokinetics of intravenously and orally administered Eprosartan in healthy males: absolute bioavailability and effect of food. Biopharm Drug Dispos 1998; 19(6): 351- 6.
Resumo:
Cellular behavior is dependent on a variety of extracellular cues required for normal tissue function, wound healing, and activation of the immune system. Removed from their in vivo microenvironment and cultured in vitro, cells lose many environmental cues and that may result in abberant behavior, making it difficult to study cellular processes. In order to mimic native tissue environments, optical tweezer and microfluidic technologies were used to place cells within defined areas of the culture environment. To provide three dimensional supports found in natural tissues, hydrogel scaffolds of poly (ethylene glycol) diacrylate and the basement membrane matrix Matrigel were used. Optical tweezer technology allowed precision placement and formation of homotypic and heterotypic arrays of human U937, HEK 293, and porcine mesenchymal stem cells. Alternatively, two microfluidic devices were designed to pattern Matrigel scaffolds. The first microfluidic device utilized laminar flow to spatially pattern multiple cell types within the device. Gradients of soluble molecules were then be formed and manipulated across the Matrigel scaffolds. Patterning Matrigel using laminar flow techniques require microfluidic expertise and do not produce consistent patterning conditions, limiting their use difficult in most cell culture laboratories. Thus, a buried Matrigel polydimethylsiloxane (PDMS) device was developed for spatial patterning of biological scaffolds. Matrigel is injected into micron sized channels of PDMS fabricated by soft lithography and allowed to thermally cure. Following curing, a second PDMS device was placed on top of the buried Matrigel channels to support media flow. In order to validate these systems, a cell-cell communication model system was developed utilizing LPS and TNFα signaling with fluorescent reporter systems to monitor communication in real time. We demonstrated the utility of microfluidic devices to support the cell-cell communication model system by co culturing three cell types within Matrigel scaffolds and monitoring signaling activity via fluorescent reporters.
Resumo:
Open-cell metal foams show promise as an emerging novel material for heat exchanger applications. The high surface-area-to-volume ratio suggests increased compactness and decrease in weight of heat exchanger designs. However, the metal foam structure appears conducive to condensate retention, which would degenerate heat transfer performance. This research investigates the condensate retention behavior of aluminum open-cell metal foams through the use of static dip tests and geometrical classification via X-ray Micro-Computed Tomography. Aluminum open-cell metal foam samples of 5, 10, 20, and 40 pores per inch (PPI), all having a void fraction greater than 90%, were included in this investigation. In order to model the condensate retention behavior of metal foams, a clearer understanding of the geometry was required. After exploring the ideal geometries presented in the open literature, X-ray Micro-Computed Tomography was employed to classify the actual geometry of the metal foam samples. The images obtained were analyzed using specialized software from which geometric information including strut length and pore shapes were extracted. The results discerned a high variability in ligament length, as well as features supporting the ideal geometry known as the Weaire-Phelan unit cell. The static dip tests consisted of submerging the metal foam samples in a liquid, then allowing gravity-induced drainage until steady-state was reached and the liquid remaining in the metal foam sample was measured. Three different liquids, water, ethylene glycol, and 91% isopropyl alcohol, were employed. The behaviors of untreated samples were compared to samples subjected to a Beomite surface treatment process, and no significant differences in retention behavior were discovered. The dip test results revealed two distinct regions of condensate retention, each holding approximately half of the total liquid retained by the sample. As expected, condensate retention increased as the pores sizes decreased. A model based on surface tension was developed to predict the condensate retention in the metal foam samples and verified using a regular mesh. Applying the model to both the ideal and actual metal foam geometries showed good agreement with the dip test results in this study.
Resumo:
Different types of base fluids, such as water, engine oil, kerosene, ethanol, methanol, ethylene glycol etc. are usually used to increase the heat transfer performance in many engineering applications. But these conventional heat transfer fluids have often several limitations. One of those major limitations is that the thermal conductivity of each of these base fluids is very low and this results a lower heat transfer rate in thermal engineering systems. Such limitation also affects the performance of different equipments used in different heat transfer process industries. To overcome such an important drawback, researchers over the years have considered a new generation heat transfer fluid, simply known as nanofluid with higher thermal conductivity. This new generation heat transfer fluid is a mixture of nanometre-size particles and different base fluids. Different researchers suggest that adding spherical or cylindrical shape of uniform/non-uniform nanoparticles into a base fluid can remarkably increase the thermal conductivity of nanofluid. Such augmentation of thermal conductivity could play a more significant role in enhancing the heat transfer rate than that of the base fluid. Nanoparticles diameters used in nanofluid are usually considered to be less than or equal to 100 nm and the nanoparticles concentration usually varies from 5% to 10%. Different researchers mentioned that the smaller nanoparticles concentration with size diameter of 100 nm could enhance the heat transfer rate more significantly compared to that of base fluids. But it is not obvious what effect it will have on the heat transfer performance when nanofluids contain small size nanoparticles of less than 100 nm with different concentrations. Besides, the effect of static and moving nanoparticles on the heat transfer of nanofluid is not known too. The idea of moving nanoparticles brings the effect of Brownian motion of nanoparticles on the heat transfer. The aim of this work is, therefore, to investigate the heat transfer performance of nanofluid using a combination of smaller size of nanoparticles with different concentrations considering the Brownian motion of nanoparticles. A horizontal pipe has been considered as a physical system within which the above mentioned nanofluid performances are investigated under transition to turbulent flow conditions. Three different types of numerical models, such as single phase model, Eulerian-Eulerian multi-phase mixture model and Eulerian-Lagrangian discrete phase model have been used while investigating the performance of nanofluids. The most commonly used model is single phase model which is based on the assumption that nanofluids behave like a conventional fluid. The other two models are used when the interaction between solid and fluid particles is considered. However, two different phases, such as fluid and solid phases is also considered in the Eulerian-Eulerian multi-phase mixture model. Thus, these phases create a fluid-solid mixture. But, two phases in the Eulerian-Lagrangian discrete phase model are independent. One of them is a solid phase and the other one is a fluid phase. In addition, RANS (Reynolds Average Navier Stokes) based Standard κ-ω and SST κ-ω transitional models have been used for the simulation of transitional flow. While the RANS based Standard κ-ϵ, Realizable κ-ϵ and RNG κ-ϵ turbulent models are used for the simulation of turbulent flow. Hydrodynamic as well as temperature behaviour of transition to turbulent flows of nanofluids through the horizontal pipe is studied under a uniform heat flux boundary condition applied to the wall with temperature dependent thermo-physical properties for both water and nanofluids. Numerical results characterising the performances of velocity and temperature fields are presented in terms of velocity and temperature contours, turbulent kinetic energy contours, surface temperature, local and average Nusselt numbers, Darcy friction factor, thermal performance factor and total entropy generation. New correlations are also proposed for the calculation of average Nusselt number for both the single and multi-phase models. Result reveals that the combination of small size of nanoparticles and higher nanoparticles concentrations with the Brownian motion of nanoparticles shows higher heat transfer enhancement and thermal performance factor than those of water. Literature suggests that the use of nanofluids flow in an inclined pipe at transition to turbulent regimes has been ignored despite its significance in real-life applications. Therefore, a particular investigation has been carried out in this thesis with a view to understand the heat transfer behaviour and performance of an inclined pipe under transition flow condition. It is found that the heat transfer rate decreases with the increase of a pipe inclination angle. Also, a higher heat transfer rate is found for a horizontal pipe under forced convection than that of an inclined pipe under mixed convection.
Resumo:
The present work has as objective the development of ceramic pigments based in iron oxides and cobalt through the polymeric precursor method, as well as study their characteristics and properties using methods of physical, chemical, morphological and optical characterizations.In this work was used iron nitrate, and cobalt citrate as precursor and nanometer silica as a matrix. The synthesis was based on dissolving the citric acid as complexing agent, addition of metal oxides, such as chromophores ions and polymerization with ethylene glycol. The powder obtained has undergone pre-ignition, breakdown and thermal treatments at different calcination temperatures (700 °C, 800 °C, 900 °C, 1000 °C and 1100 °C). Thermogravimetric analyzes were performed (BT) and Differential Thermal Analysis (DTA), in order to evaluate the term decomposition of samples, beyond characterization by techniques such as BET, which classified as microporous materials samples calcined at 700 ° C, 800 º C and 900 º C and non-porous when annealed at 1000 ° C and 1100 º C, X-ray diffraction (XRD), which identified the formation of two crystalline phases, the Cobalt Ferrite (CoFe2O4) and Cristobalite (SiO2), Scanning Electron Microscopy (SEM) revealed the formation of agglomerates of particles slightly rounded;and Analysis of Colorimetry, temperature of 700 °C, 800 °C and 900 °C showed a brown color and 1000 °C and 1100 °C violet
Resumo:
The present work deals with the synthesis of materials with perovskite structure with the intention of using them as cathodes in fuel cells SOFC type. The perovskite type materials were obtained by chemical synthesis method, using gelatin as the substituent of citric acid and ethylene glycol, and polymerizing acting as chelating agent. The materials were characterized by X-ray diffraction, thermal analysis, spectroscopy Fourier transform infrared, scanning electron microscopy with EDS, surface area determination by the BET method and Term Reduction Program, TPR. The compounds were also characterized by electrical conductivity for the purpose of observing the possible application of this material as a cathode for fuel cells, solid oxide SOFC. The method using gelatin and polymerizing chelating agent for the preparation of materials with the perovskite structure allows the synthesis of crystalline materials and homogeneous. The results demonstrate that the route adopted to obtain materials were effective. The distorted perovskite structure have obtained the type orthorhombic and rhombohedral; important for fuel cell cathodes. The presentation material properties required of a candidate cathode materials for fuel cells. XRD analysis contacted by the distortion of the structures of the synthesized materials. The analyzes show that the electrical conductivity obtained materials have the potential to act as a cell to the cathode of solid oxide fuel, allowing to infer an order of values for the electrical conductivities of perovskites where LaFeO3 < LaNiO3 < LaNi0,5Fe0,5O3. It can be concluded that the activity of these perovskites is due to the presence of structural defects generated that depend on the method of synthesis and the subsequent heat treatment
Resumo:
Since the beginning of the National Program for Production and Use of Biodiesel in Brazil, in 2004, different raw materials were evaluated for biodiesel production, trying to combine the agricultural diversity of the country to the desire to reduce production coasts. To determine the chemical composition of biodiesel produced from common vegetables oils, international methods have been used widely in Brazil. However, for analyzing biodiesel samples produced from some alternative raw materials analytical problems have been detected. That was the case of biodiesel from castor oil. Due the need to overcome these problems, new methodologies were developed using different chromatographic columns, standards and quantitative methods. The priority was simplifying the equipment configuration, realizing faster analyses, reducing the costs and facilitating the routine of biodiesel research and production laboratories. For quantifying free glycerin, the ethylene glycol was used in instead of 1,2,4-butanetriol, without loss of quality results. The ethylene glycol is a cheaper and easier standard. For methanol analyses the headspace was not used and the cost of the equipment used was lower. A detailed determination of the esters helped the deeper knowledge of the biodiesel composition. The report of the experiments and conclusions of the research that resulted in the development of alternative methods for quality control of the composition of the biodiesel produced in Brazil, a country with considerable variability of species in agriculture, are the goals of this thesis and are reported in the following pages
Resumo:
The dual problems of sustaining the fast growth of human society and preserving the environment for future generations urge us to shift our focus from exploiting fossil oils to researching and developing more affordable, reliable and clean energy sources. Human beings had a long history that depended on meeting our energy demands with plant biomass, and the modern biorefinery technologies realize the effective conversion of biomass to production of transportation fuels, bulk and fine chemicals so to alleviate our reliance on fossil fuel resources of declining supply. With the aim of replacing as much non-renewable carbon from fossil oils with renewable carbon from biomass as possible, innovative R&D activities must strive to enhance the current biorefinery process and secure our energy future. Much of my Ph.D. research effort is centered on the study of electrocatalytic conversion of biomass-derived compounds to produce value-added chemicals, biofuels and electrical energy on model electrocatalysts in AEM/PEM-based continuous flow electrolysis cell and fuel cell reactors. High electricity generation performance was obtained when glycerol or crude glycerol was employed as fuels in AEMFCs. The study on selective electrocatalytic oxidation of glycerol shows an electrode potential-regulated product distribution where tartronate and mesoxalate can be selectively produced with electrode potential switch. This finding then led to the development of AEMFCs with selective production of valuable tartronate or mesoxalate with high selectivity and yield and cogeneration of electricity. Reaction mechanisms of electrocatalytic oxidation of ethylene glycol and 1,2-propanediol were further elucidated by means of an on-line sample collection technique and DFT modeling. Besides electro-oxidation of biorenewable alcohols to chemicals and electricity, electrocatalytic reduction of keto acids (e.g. levulinic acid) was also studied for upgrading biomass-based feedstock to biofuels while achieving renewable electricity storage. Meanwhile, ORR that is often coupled in AEMFCs on the cathode was investigated on non-PGM electrocatalyst with comparable activity to commercial Pt/C. The electro-biorefinery process could be coupled with traditional biorefinery operation and will play a significant role in our energy and chemical landscape.
Resumo:
1,4,10,13,16-Pentaazatricycloheneicosane-9,17-dione (macrocyclic polyamine)-modified polymer-based monolithic column for CEC was prepared by ring opening reaction of epoxide groups from poly(glycidyl methacrylate-co-ethylene dimethacrylate) (GMA-co-EDMA) monolith with macrocyclic polyamine. Conditions such as reaction time and concentration of macrocyclic polyamine for the modification reaction were optimized to generate substantial EOF and enough chromatographic interactions. Anodic EOF was observed in the pH range of 2.0-8.0 studied due to the protonation of macrcyclic polyamine at the surface of the monolith. Morphology of the monolithic column was examined by SEM and the incorporation of macrocyclic polyamine to the poly(GMA-co-EDMA) monolith was characterized by infrared (IR) spectra. Successful separation of inorganic anions, isomeric benzenediols, and benzoic acid derivatives on the monolithic column was achieved for CEC. In addition to hydrophobic interaction, hydrogen bonding and electrostatic interaction played a significant role in the separation process.
Resumo:
Hollow porous poly(2-hydroxyethyl methacrylate-co-ethylene dimethacrylate)(HEMA-co-EDMA) spheres were prepared by emulsifier-free emulsion polymerization, swelling, seed emulsion polymerization and extraction. Then the spheres activated with 2,4,6-trichloro-1,3,5-triazine were functioned with adipohydrazide (AH). After periodate oxidation of its carbohydrate moieties, horseradish peroxidase was immobilized on the hydrazide-functionalized hollow porous poly(HEMA-co-EDMA) spheres. The amount of immobilized enzyme was up to 43.4 mu g of enzyme/g of support. Moreover, the immobilized horseradish peroxidase exhibited high activity and good stability.
Resumo:
A novel structural triblock copolymer of poly(gamma-benzyl-L-glutamic acid)-b-poly(ethylene oxide)-b-poly(epsilon-caprolactone) (PBLG-PEO-PCL) was synthesized by a new approach in the following three steps: (1) sequential anionic ring opening polymerization (ROP) of ethylene oxide and epsilon-caprolactone with an acetonitrile/potassium naphthalene initiator system to obtain a diblock copolymer CN-PEO-PCL with a cyano end-group; (2) conversion of the CN end-group into NH2 end-group by hydrogenation to obtain NH2-PEO-PCL; (3) ROP of gamma-benzyl-L-glutamate-N-carboxyanhydrides (Bz-L-GluNCA) with NH2-PEO-PCL as macroinitiator to obtain the target triblock copolymer. The structures from CN-PEO precursor to the triblock copolymers were confirmed by FT-IR and H-1 NMR spectroscopy, and their molecular weights were measured by gel permeation chromatography. The monomer of Bz-L-GluNCA can react almost quantitatively with the amino end-groups of NH2-PEO-PCL macroinitiator by ROP.
Resumo:
The crystallization behavior and morphology of the crystalline-crystalline poly(ethylene oxide)-poly(epsilon-caprolactone) diblock copolymer (PEO-b-PCL) was studied by differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), Fourier transform infrared spectroscopy (FTIR), small-angle X-ray scattering (SAXS), and hot-stage polarized optical microscope (POM). The mutual effects between the PEO and PCL blocks were significant, leading to the obvious composition dependence of the crystallization behavior and morphology of PEO-b-PCL. In this study, the PEO block length was fixed (M-n = 5000) and the weight ratio of PCL/PEO was tailored by changing the PCL block length. Both blocks could crystallize in PEO-b-PCL with the PCL weight fraction (WFPCL) of 0.23-0.87. For the sample with the WFPCL of 0.36 or less, the PEO block crystallized first, resulting in the obvious confinement of the PCL block and vice versa for the sample with WFPCL of 0.43 or more. With increasing WFPCL, the crystallinity of PEO reduced continuously while the variation of the PCL crystallinity exhibited a maximum. The long period of PEO-b-PCL increased with increasing WFPCL from 0.16 to 0.50 but then decreased with the further increase of WFPCL due to the interaction of the respective variation of the thicknesses of the PEO and PCL crystalline lamellae.