886 resultados para ENVIRONMENTAL-CONDITIONS
Resumo:
This paper presents a policy definition language which forms part of a generic policy toolkit for autonomic computing systems in which the policies themselves can be modified dynamically and automatically. Targeted enhancements to the current state of practice include: policy self-adaptation where the policy itself is dynamically modified to match environmental conditions; improved support for non autonomics-expert developers; and facilitating easy deployment of adaptive policies into legacy code. The policy definition language permits powerful expression of self-managing behaviours and facilitates a diverse policy behaviour space. Features include support for multiple versions of a given policy type, multiple configuration templates, and meta policies to dynamically select between policy instances. An example deployment scenario illustrates advanced functionality in the context of a multi policy stock trading system which is sensitive to environmental volatility.
Resumo:
The electric car, the all electric aircraft and requirements for renewable energy are examples of potential technologies needed to address the world problem of global warming/carbon emission etc. Power electronics and packaged modules are fundamental for the underpinning of these technologies and with the diverse requirements for electrical configurations and the range of environmental conditions, time to market is paramount for module manufacturers and systems designers alike. This paper details some of the results from a major UK project into the reliability of power electronic modules using physics of failure techniques. This paper presents a design methodology together with results that demonstrate enhanced product design with improved reliability, performance and value within acceptable time scales
Resumo:
The electric car, the all electric aircraft and requirements for renewable energy are prime examples of potential technologies needing to be addressed in the world problem of global warming/carbon emission etc. Power electronics are fundamental for the underpinning of these technologies and with the diverse requirements for electrical configurations and the range of environmental conditions, time to market is paramount for module manufacturers and systems designers alike. This paper presents a 'virtual' design methodology together with theoretical and experimental results that demonstrate enhanced product design with improved reliability, performance and cost value within competitive schemes.
Resumo:
Executive Summary 1. The Marine Life Information Network (MarLIN) has been developed since 1998. Defra funding has supported a core part of its work, the Biology and Sensitivity Key Information Sub-programme. This report relates to Biology and Sensitivity work for the period 2001-2004. 2. MarLIN Biology and Sensitivity research takes information on the biology of species to identify the likely effects of changing environmental conditions linked to human activities on those species. In turn, species that are key functional, key structural, dominant, or characteristic in a biotope (the habitat and its associated species) are used to identify biotope sensitivity. Results are displayed over the World Wide Web and can be accessed via a range of search tools that make the information of relevance to environmental management. 3. The first Defra contract enabled the development of criteria and methods of research, database storage methods and the research of a wide range of species. A contract from English Nature and Scottish Natural Heritage enabled biotopes relevant to marine SACs to be researched. 4. Defra funding in 2001-2004 has especially enabled recent developments to be targeted for research. Those developments included the identification of threatened and declining species by the OSPAR Biodiversity Committee, the development of a new approach to defining sensitivity (part of the Review of Marine Nature Conservation), and the opportunity to use Geographical Information Systems (GIS) more effectively to link survey data to MarLIN assessments of sensitivity. 5. The MarLIN database has been developed to provide a resource to 'pick-and-mix' information depending on the questions being asked. Using GIS, survey data that provides locations for species and biotopes has been linked to information researched by MarLIN to map the likely sensitivity of an area to a specified factor. Projects undertaken for the Irish Sea pilot (marine landscapes), in collaboration with CEFAS (fishing impacts) and with the Countryside Council for Wales (oil spill response) have demonstrated the application of MarLIN information linked to survey data in answering, through maps, questions about likely impacts of human activities on seabed ecosystems. 6. GIS applications that use MarLIN sensitivity information give meaningful results when linked to localized and detailed survey information (lists of species and biotopes as point source or mapped extents). However, broad landscape units require further interpretation. 7. A new mapping tool (SEABED map) has been developed to display data on species distributions and survey data according to search terms that might be used by an environmental manager. 8. MarLIN outputs are best viewed on the Web site where the most up-to-date information from live databases is available. The MarLIN Web site receives about 1600 visits a day. 9. The MarLIN approach to assessing sensitivity and its application to environmental management were presented in papers at three international conferences during the current contract and a 'touchstone' paper is to be published in the peer-reviewed journal Hydrobiologia. The utility of MarLIN information for environmental managers, amongst other sorts of information, has been described in an article in Marine Pollution Bulletin. 10. MarLIN information is being used to inform the identification of potential indicator species for implementation of the Water Framework Directive including initiatives by ICES. 11. Non-Defra funding streams are supporting the updating of reviews and increasing the amount of peer review undertaken; both of which are important to the maintenance of the resource. However, whilst MarLIN information is sufficiently wide ranging to be used in an 'operational' way for marine environmental protection and management, new initiatives and the new biotopes classification have introduced additional species and biotopes that will need to be researched in the future. 12. By the end of the contract, the Biology and Sensitivity Key Information database contained full Key Information reviews on 152 priority species and 117 priority biotopes, together with basic information on 412 species; a total of 564 marine benthic species.
Resumo:
Several environmental/physical variables derived from satellite and in situ data sets were used to understand the variability of coccolithophore abundance in the subarctic North Atlantic. The 7-yr (1997–2004) time-series analysis showed that the combined effects of high solar radiation, shallow mixed layer depth (<20 m), and increased temperatures explained >89% of the coccolithophore variation. The June 1998 bloom, which was associated with high light intensity, unusually high sea-surface temperature, and a very shallow mixed layer, was found to be one of the most extensive (>995,000 km2) blooms ever recorded. There was a pronounced sea-surface temperature shift in the mid-1990s with a peak in 1998, suggesting that exceptionally large blooms are caused by pronounced environmental conditions and the variability of the physical environment strongly affects the spatial extent of these blooms. Consequently, if the physical environment varies, the effects of these blooms on the atmospheric and oceanic environment will vary as well.
Resumo:
Monitoring of Phaeocystis since 1948 during the Continuous Plankton Recorder survey indicates that over the last 5.5 decades the distribution of its colonies in the North Atlantic Ocean was not restricted to neritic waters: occurrence was also recorded in the open Atlantic regions sampled, most frequently in the spring. Apparently, environmental conditions in open ocean waters, also those far oVshore, are suitable for complete lifecycle development of colonies (the only stage recorded in the survey). In the North Sea the frequency of occurrence was also highest in spring. Its southeastern part was the Phaeocystis abundance hotspot of the whole area covered by the survey. Frequency was especially high before the 1960s and after the 1980s, i.e., in the periods when anthropogenic nutrient enrichment was relatively low. Changes in eutrophication have obviously not been a major cause of long-term Phaeocystis variation in the southeastern North Sea, where total phytoplankton biomass was related signiWcantly to river discharge. Evidence is presented for the suggestion that Phaeocystis abundance in the southern North Sea is to a large extent determined by the amount of Atlantic Ocean water Xushed in through the Dover Strait. Since Phaeocystis plays a key role in element Xuxes relevant to climate the results presented here have implications for biogeochemical models of cycling of carbon and sulphur. Sea-to-air exchange of CO2 and dimethyl sulphide (DMS) has been calculated on the basis of measurements during single-year cruises. The considerable annual variation in phytoplankton and in its Phaeocystis component reported here does not warrant extrapolation of such figures.
Resumo:
We applied coincident Earth observation data collected during 2008 and 2009 from multiple sensors (RA2, AATSR and MERIS, mounted on the European Space Agency satellite Envisat) to characterise environmental conditions and integrated sea-air fluxes of CO2 in three Arctic seas (Greenland, Barents, Kara). We assessed net CO2 sink sensitivity due to changes in temperature, salinity and sea ice duration arising from future climate scenarios. During the study period the Greenland and Barents seas were net sinks for atmospheric CO2, with integrated sea-air fluxes of -36 +/- 14 and -11 +/- 5 Tg C yr(-1), respectively, and the Kara Sea was a weak net CO2 source with an integrated sea-air flux of +2.2 +/- 1.4 TgC yr(-1). The combined integrated CO2 sea-air flux from all three was -45 +/- 18 TgC yr(-1). In a sensitivity analysis we varied temperature, salinity and sea ice duration. Variations in temperature and salinity led to modification of the transfer velocity, solubility and partial pressure of CO2 taking into account the resultant variations in alkalinity and dissolved organic carbon (DOC). Our results showed that warming had a strong positive effect on the annual integrated sea-air flux of CO2 (i.e. reducing the sink), freshening had a strong negative effect and reduced sea ice duration had a small but measurable positive effect. In the climate change scenario examined, the effects of warming in just over a decade of climate change up to 2020 outweighed the combined effects of freshening and reduced sea ice duration. Collectively these effects gave an integrated sea-air flux change of +4.0 TgC in the Greenland Sea, +6.0 Tg C in the Barents Sea and +1.7 Tg C in the Kara Sea, reducing the Greenland and Barents sinks by 11% and 53 %, respectively, and increasing the weak Kara Sea source by 81 %. Overall, the regional integrated flux changed by +11.7 Tg C, which is a 26% reduction in the regional sink. In terms of CO2 sink strength, we conclude that the Barents Sea is the most susceptible of the three regions to the climate changes examined. Our results imply that the region will cease to be a net CO2 sink in the 2050s.
Resumo:
Aim Recent studies have suggested that global diatom distributions are not limited by dispersal, in the case of both extant species and fossil species, but rather that environmental filtering explains their spatial patterns. Hubbell's neutral theory of biodiversity provides a framework in which to test these alternatives. Our aim is to test whether the structure of marine phytoplankton (diatoms, dinoflagellates and coccolithophores) assemblages across the Atlantic agrees with neutral theory predictions. We asked: (1) whether intersite variance in phytoplankton diversity is explained predominantly by dispersal limitation or by environmental conditions; and (2) whether species abundance distributions are consistent with those expected by the neutral model. Location Meridional transect of the Atlantic (50 degrees N50 degrees S). Methods We estimated the relative contributions of environmental factors and geographic distance to phytoplankton composition using similarity matrices, Mantel tests and variation partitioning of the species composition based upon canonical ordination methods. We compared the species abundance distribution of phytoplankton with the neutral model using Etienne's maximum-likelihood inference method. Results Phytoplankton communities are slightly more determined by niche segregation (24%), than by dispersal limitation and ecological drift (17%). In 60% of communities, the assumption of neutrality in species' abundance distributions could not be rejected. In tropical zones, where oceanic gyres enclose large stable water masses, most communities showed low species immigration rates; in contrast, we infer that communities in temperate areas, out of oligotrophic gyres, have higher rates of species immigration. Conclusions Phytoplankton community structure is consistent with partial niche assembly and partial dispersal and drift assembly (neutral processes). The role of dispersal limitation is almost as important as habitat filtering, a fact that has been largely overlooked in previous studies. Furthermore, the polewards increase in immigration rates of species that we have discovered is probably caused by water mixing conditions and productivity.
Resumo:
The vertical distribution of decapod larvae off the northwest Portuguese coast was analysed in relation to associated environmental conditions from sampling during a 69 h period around a current meter mooring located on the shelf, approximately 21 km off the coast. Plankton samples were collected every 2 h at the surface with a neuston net and through the water column with a Longhurst Hardy Plankton Recorder (Pro-LHPR), allowing a very detailed resolution of larval vertical distribution. Environmental data (temperature, salinity, and chlorophyll a) were obtained every hour. To investigate the horizontal distribution of decapod larvae in relation to the coast, a plankton-sampling grid was carried out before the 69 h fixed station. Larvae of shelf decapod species were widely distributed over the shelf, while those of inshore species were found much closer to the coast. Decapod larvae (zoeae and megalopae) showed clear diel vertical migrations, only appearing in the upper 20 m at night, a migration that did not appear to be affected by physical conditions in the water column. Larval densities were highly variable, 0.01 to 215 ind. m super(-3) for zoeae and 0 to 93 ind. m super(-3) for megalopae, the zoeae being generally more abundant. The results indicated that during the day larvae accumulate very close to the bottom. The diel vertical migration behaviour is discussed as one of the contributing mechanisms for larval retention over the shelf, even with offshore transport conditions promoted by coastal upwelling, and is hence of major relevance for the recruitment success of decapod species that inhabit inshore and shelf zones of coastal upwelling systems.
Resumo:
The Mediterranean Sea is located in a crossroad of mid-latitude and subtropical climatic modes that enhance contrasting environmental conditions over both latitudinal and longitudinal ranges. Here, we show that the large-scale environmental forcing is reflected in the basin scale trends of the adult population of the calanoid copepod Centropages typicus. The species is distributed over the whole Mediterranean basin, and maximal abundances were found in the north-western basin associated to oceanic fronts, and in the Adriatic Sea associated to shallow and semi enclosed waters. The peak of main abundances of C. typicus correlates with the latitudinal temperature gradient and the highest seasonal abundances occurred in spring within the 14–18°C temperature window. Such thermal cline may define the latitudinal geographic region where C. typicus seasonally dominates the >200 μm-sized spring copepod community in the Mediterranean Sea. The approach used here is generally applicable to investigate the large-scale spatial patterns of other planktonic organisms and to identify favourable environmental windows for population development.
Resumo:
The North Sea cod (
Resumo:
The Continuous Plankton Recorder (CPR) dataset on fish larvae has an extensive spatio-temporal coverage that allows the responses of fish populations to past changes in climate variability, including abrupt changes such as regime shifts, to be investigated. The newly available dataset offers a unique opportunity to investigate long-term changes over decadal scales in the abundance and distribution of fish larvae in relation to physical and biological factors. A principal component analysis (PCA) using 7 biotic and abiotic parameters is applied to investigate the impact of environmental changes in the North Sea on 5 selected taxa of fish larvae during the period 1960 to 2004. The analysis revealed 4 periods of time (1960–1976; 1977–1982; 1983–1996; 1997–2004) reflecting 3 different ecosystem states. The larvae of clupeids, sandeels, dab and gadoids seemed to be affected mainly by changes in the plankton ecosystem, while the larvae of migratory species such as Atlantic mackerel responded more to hydrographic changes. Climate variability seems more likely to influence fish populations through bottom-up control via a cascading effect from changes in the North Atlantic Oscillation (NAO) impacting on the hydro dynamic features of the North Sea, in turn impacting on the plankton available as prey for fish larvae. The responses and adaptability of fish larvae to changing environmental conditions, parti cularly to changes in prey availability, are complex and species-specific. This complexity is enhanced with fishing effects interacting with climate effects and this study supports furthering our under - standing of such interactions before attempting to predict how fish populations respond to climate variability
Resumo:
Understanding long‐term, ecosystem‐level impacts of climate change is challenging because experimental research frequently focuses on short‐term, individual‐level impacts in isolation. We address this shortcoming first through an interdisciplinary ensemble of novel experimental techniques to investigate the impacts of 14‐month exposure to ocean acidification and warming (OAW) on the physiology, activity, predatory behaviour and susceptibility to predation of an important marine gastropod (Nucella lapillus). We simultaneously estimated the potential impacts of these global drivers on N. lapillus population dynamics and dispersal parameters. We then used these data to parameterize a dynamic bioclimatic envelope model, to investigate the consequences of OAW on the distribution of the species in the wider NE Atlantic region by 2100. The model accounts also for changes in the distribution of resources, suitable habitat and environment simulated by finely resolved biogeochemical models, under three IPCC global emissions scenarios. The experiments showed that temperature had the greatest impact on individual‐level responses, while acidification had a similarly important role in the mediation of predatory behaviour and susceptibility to predators. Changes in Nucella predatory behaviour appeared to serve as a strategy to mitigate individual‐level impacts of acidification, but the development of this response may be limited in the presence of predators. The model projected significant large‐scale changes in the distribution of Nucella by the year 2100 that were exacerbated by rising greenhouse gas emissions. These changes were spatially heterogeneous, as the degree of impact of OAW on the combination of responses considered by the model varied depending on local‐environmental conditions and resource availability. Such changes in macro‐scale distributions cannot be predicted by investigating individual‐level impacts in isolation, or by considering climate stressors separately. Scaling up the results of experimental climate change research requires approaches that account for long‐term, multiscale responses to multiple stressors, in an ecosystem context.
Resumo:
Understanding long-term, ecosystem-level impacts of climate change is challenging because experimental research frequently focuses on short-term, individual-level impacts in isolation. We address this shortcoming first through an inter-disciplinary ensemble of novel experimental techniques to investigate the impacts of 14-month exposure to ocean acidification and warming (OAW) on the physiology, activity, predatory behaviour and susceptibility to predation of an important marine gastropod (Nucella lapillus). We simultaneously estimated the potential impacts of these global drivers on N. lapillus population dynamics and dispersal parameters. We then used these data to parameterise a dynamic bioclimatic envelope model, to investigate the consequences of OAW on the distribution of the species in the wider NE Atlantic region by 2100. The model accounts also for changes in the distribution of resources, suitable habitat and environment simulated by finely resolved biogeochemical models, under three IPCC global emissions scenarios. The experiments showed that temperature had the greatest impact on individual level responses, while acidification has a similarly important role in the mediation of predatory behaviour and susceptibility to predators. Changes in Nucella predatory behaviour appeared to serve as a strategy to mitigate individual level impacts of acidification, but the development of this response may be limited in the presence of predators. The model projected significant large-scale changes in the distribution of Nucella by the year 2100 that were exacerbated by rising greenhouse gas emissions. These changes were spatially heterogeneous, as the degree of impact of OAW on the combination of responses considered by the model varied depending on local environmental conditions and resource availability. Such changes in macro-scale distributions cannot be predicted by investigating individual level impacts in isolation, or by considering climate stressors separately. Scaling up the results of experimental climate change research requires approaches that account for long-term, multi-scale responses to multiple stressors, in an ecosystem context.
Resumo:
Migrations between different habitats are key events in the lives of many organisms. Such movements involve annually recurring travel over long distances usually triggered by seasonal changes in the environment. Often, the migration is associated with travel to or from reproduction areas to regions of growth. Young anadromous Atlantic salmon (Salmo salar) emigrate from freshwater nursery areas during spring and early summer to feed and grow in the North Atlantic Ocean. The transition from the freshwater (parr') stage to the migratory stage where they descend streams and enter salt water (smolt') is characterized by morphological, physiological and behavioural changes where the timing of this parr-smolt transition is cued by photoperiod and water temperature. Environmental conditions in the freshwater habitat control the downstream migration and contribute to within- and among-river variation in migratory timing. Moreover, the timing of the freshwater emigration has likely evolved to meet environmental conditions in the ocean as these affect growth and survival of the post-smolts. Using generalized additive mixed-effects modelling, we analysed spatio-temporal variations in the dates of downstream smolt migration in 67 rivers throughout the North Atlantic during the last five decades and found that migrations were earlier in populations in the east than the west. After accounting for this spatial effect, the initiation of the downstream migration among rivers was positively associated with freshwater temperatures, up to about 10 degrees C and levelling off at higher values, and with sea-surface temperatures. Earlier migration occurred when river discharge levels were low but increasing. On average, the initiation of the smolt seaward migration has occurred 2.5days earlier per decade throughout the basin of the North Atlantic. This shift in phenology matches changes in air, river, and ocean temperatures, suggesting that Atlantic salmon emigration is responding to the current global climate changes.