581 resultados para ENHANCER


Relevância:

10.00% 10.00%

Publicador:

Resumo:

O relatório apresenta o trabalho desenvolvido durante o estágio na Câmara Municipal de Ferreira do Alentejo, objetivado pela obtenção do grau de mestre em Arquitetura Paisagista. Este trabalho pretende valorizar os princípios adquiridos ao longo do percurso académico em licenciatura e mestrado de Arquitetura Paisagista, na ilustre Universidade de Évora, e dar resposta ao objetivo proposto pela entidade acolhedora no presente estágio – a proposta de um percurso potenciador da Paisagem no espaço urbano de Ferreira do Alentejo; ABSTRACT: This report presents the work carried out during the internship at the municipality of Ferreira do Alentejo, which was objectified for obtainment of Master degree in Landscape Architecture. This work aims to enrich the principles acquired during the academic path with the graduation and master degree at the Évora University and to respond to the host institution objective for this internship - the proposal for a landscape enhancer pathway in urban areas of Ferreira do Alentejo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Les cellules endothéliales forment une couche semi-perméable entre le sang et les organes. La prolifération, la migration et la polarisation des cellules endothéliales sont essentielles à la formation de nouveaux vaisseaux à partir de vaisseaux préexistants, soit l’angiogenèse. Le facteur de croissance de l’endothélium vasculaire (VEGF) peut activer la synthase endothéliale du monoxyde d’azote (eNOS) et induire la production de monoxyde d’azote (NO) nécessaire pour la régulation de la perméabilité vasculaire et l’angiogenèse. β- caténine est une composante essentielle du complexe des jonctions d’ancrage ainsi qu’un régulateur majeur de la voie de signalisation de Wnt/β-caténine dans laquelle elle se joint au facteur de transcription TCF/LEF et module l’expression de nombreux gènes, dont certains sont impliqués dans l’angiogenèse. La S-nitrosylation (SNO) est un mécanisme de régulation posttraductionnel des protéines par l’ajout d’un groupement nitroso au niveau de résidus cystéines. Le NO produit par eNOS peut induire la S-nitrosylation de la β−caténine au niveau des jonctions intercellulaires et moduler la perméabilité de l’endothélium. Il a d’ailleurs été montré que le NO peut contrôler l’expression génique par la transcription. Le but de cette thèse est d’établir le rôle du NO au sein de la transcription des cellules endothéliales, spécifiquement au niveau de l’activité de β-caténine. Le premier objectif était de déterminer si la SNO de la β-caténine affecte son activité transcriptionnelle. Nous avons montré que le NO inhibe l’activité transcriptionnelle de β- caténine ainsi que la prolifération des cellules endothéliales induites par l’activation de la voie Wnt/β-caténine. Il est intéressant de constater que le VEGF, qui induit la production de NO via eNOS, réprime l’expression de AXIN2 qui est un gène cible de Wnt s’exprimant suite à la i i stimulation par Wnt3a et ce, dépendamment de eNOS. Nous avons identifié que la cystéine 466 de la β-caténine est un résidu essentiel à la modulation répressive de son activité transcriptionnelle par le NO. Lorsqu’il est nitrosylé, ce résidu est responsable de la perturbation du complexe de transcription formé de β-caténine et TCF-4 ce qui inhibe la prolifération des cellules endothéliales induite par la stimulation par Wnt3a. Puisque le NO affecte la transcription, nous avons réalisé l’analyse du transcriptome afin d’obtenir une vue d’ensemble du rôle du NO dans l’activité transcriptionnelle des cellules endothéliales. L’analyse différentielle de l’expression des gènes de cellules endothéliales montre que la répression de eNOS par siRNA augmente l’expression de gènes impliqués au niveau de la polarisation tels que : PARD3A, PARD3B, PKCZ, CRB1 et TJ3. Cette analyse suggère que le NO peut réguler la polarisation des cellules et a permis d’identifier des gènes responsables de l’intégrité des cellules endothéliales et de la réponse immunitaire. De plus, l’analyse de voies de signalisation par KEGG montre que certains gènes modulés par l’ablation de eNOS sont enrichis dans de nombreuses voies de signalisation, notamment Ras et Notch qui sont importantes lors de la migration cellulaire et la différenciation des cellules de têtes et de tronc (tip/stalk). Le regroupement des gènes exprimés chez les cellules traitées au VEGF (déplétées de eNOS ou non) révèle que le NO peut affecter l’expression de gènes contribuant au processus angiogénique, dont l’attraction chimiotactique. Notre étude montre que le NO module la transcription des cellules endothéliales et régule l’expression des gènes impliqués dans l’angiogenèse et la fonction endothéliale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Berlim e a sua paisagem sonora suscitam emoções diversas capazes de desencadear um processo criativo. As palavras que se seguem são a expressão de um projeto que se quis catalisador de um olhar muito pessoal sobre esta cidade. Tendo como base, na criação, a estética da colagem, este projeto materializa-se numa performance final onde uma atriz, uma bailarina e um trombonista dão corpo a diversas emoções. Ainda na criação, é importante salientar o papel das técnicas de síntese na busca de novas sonoridades e o uso de tecnologias da música na composição e edição musical. Está patente, neste projeto, um clin-d’oeil ao serialismo e a corrente espectral francesa. As anotações dramatúrgicas foram também essenciais ao longo da composição musical e da encenação de toda a performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ongoing quest for finding treatment against memory loss seen in aging and in many neurological and neurodegenerative diseases, so far has been unsuccessful and memory enhancers are seen as a potential remedy against this brain dysfunction. Recently, we showed that gene corresponding to a protein called regulator of G-protein signaling 14 of 414 amino acids (RGS14414) is a robust memory enhancer (Lopez-Aranda et al. 2009: Science). RGS14414-treatment in area V2 of visual cortex caused memory enhancement to such extent that it converted short-term object recognition memory (ORM) of 45min into long lasting long-term memory that could be traced even after many months. Now, through targeting of multiple receptors and molecules known to be involved in memory processing, we found that GluR2 subunit of AMPA receptor might be key to memory enhancement in RGS-animals. RGS14-animals showed a progressive increase in GluR2 protein expression while processing an object information which reached to highest level after 60min of object exposure, a time period required for conversion of short-term ORM into long-term memory in our laboratory set up. Normal rats could retain an object information in brain for 45min (short-term) and not for 60min. However, RGS-treated rats are able to retain the same information for 24h or longer (long-term). Therefore, highest expression of GluR2 subunit seen at 60min suggests that this protein might be key in memory enhancement and conversion to long-term memory in RGS-animals. In addition, we will also discuss the implication of Hebbian plasticity and interaction of brain circuits in memory enhancement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de Mestrado, Engenharia Biológica, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2014

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A large proportion of human populations suffer memory impairments either caused by normal aging or afflicted by diverse neurological and neurodegenerative diseases. Memory enhancers and other drugs tested so far against memory loss have failed to produce therapeutic efficacy in clinical trials and thus, there is a need to find remedy for this mental disorder. In search for cure of memory loss, our laboratory discovered a robust memory enhancer called RGS14(414). A treatment in brain with its gene produces an enduring effect on memory that lasts for lifetime of rats. Therefore, current thesis work was designed to investigate whether RGS14(414) treatment can prevent memory loss and furthermore, explore through biological processes responsible for RGS-mediated memory enhancement. We found that RGS14(414) gene treatment prevented episodic memory loss in rodent models of normal aging and Alzheimer´s disease. A memory loss was observed in normal rats at 18 months of age; however, when they were treated with RGS14(414) gene at 3 months of age, they abrogated this deficit and their memory remained intact till the age of 22 months. In addition to normal aging rats, effect of memory enhancer treatment in mice model of Alzheimer´s disease (AD-mice) produced a similar effect. AD-mice subjected to treatment with RGS14(414) gene at the age of 2 months, a period when memory was intact, showed not only a prevention in memory loss observed at 4 months of age but also they were able to maintain normal memory after 6 months of the treatment. We posit that long-lasting effect on memory enhancement and prevention of memory loss mediated through RGS14(414) might be due to a permanent structural change caused by a surge in neuronal connections and enhanced neuronal remodeling, key processes for long-term memory formation. A neuronal arborization analysis of both pyramidal and non-pyramidal neurons in brain of RGS14(414)-treated rats exhibited robust rise in neurites outgrowth of both kind of cells, and an increment in number of branching from the apical dendrite of pyramidal neurons, reaching to almost three times of the control animals. To further understand of underlying mechanism by which RGS14(414) induces neuronal arborization, we investigated into neurotrophic factors. We observed that RGS14 treatment induces a selective increase in BDNF. Role of BDNF in neuronal arborization, as well as its implication in learning and memory processes is well described. In addition, our results showing a dynamic expression pattern of BDNF during ORM processing that overlapped with memory consolidation further support the idea of the implication of this neurotrophin in formation of long-term memory in RGS-animals. On the other hand, in studies of expression profiling of RGS-treated animals, we have demonstrated that 14-3-3ζ protein displays a coherent relationship to RGS-mediated ORM enhancement. Recent studies have demonstrated that the interaction of receptor for activated protein kinase 1 (RACK1) with 14-3-3ζ is essential for its nuclear translocation, where RACK1-14-3-3ζ complex binds at promotor IV region of BDNF and promotes an increase in BDNF gene transcription. These observations suggest that 14-3-3ζ might regulate the elevated level of BDNF seen in RGS14(414) gene treated animals. Therefore, it seems that RGS-mediated surge in 14-3-3ζ causes elevated BDNF synthesis needed for neuronal arborization and enhanced ORM. The prevention of memory loss might be mediated through a restoration in BDNF and 14-3-3ζ protein levels, which are significantly decreased in aging and Alzheimer’s disease. Additionally, our results demonstrate that RGS14(414) treatment could be a viable strategy against episodic memory loss.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Melanocytes, pigment-producing cells, derive from the neural crest (NC), a population of pluripotent cells that arise from the dorsal aspect of the neural tube during embryogenesis. Many genes required for melanocyte development were identified using mouse pigmentation mutants. The deletion of the transcription factor Ets1 in mice results in hypopigmentation; nevertheless, the function of Ets1 in melanocyte development is unknown. The goal of the present study was to establish the temporal requirement and role of Ets1 in murine melanocyte development. In the mouse, Ets1 is widely expressed in developing organs and tissues, including the NC. In the chick cranial NC, Ets1 is required for the expression of Sox10, a transcription factor critical for the development of melanocytes, enteric ganglia, and other NC derivatives. Using a combination of immunofluorescence and cell survival assays Ets1 was found to be required between embryonic days 10 and 11, when it regulates NC cell and melanocyte precursor (melanoblast) survival. Given the requirement of Ets1 for Sox10 expression in the chick cranial NC, a potential interaction between these genes was investigated. Using genetic crosses, a synergistic genetic interaction between Ets1 and Sox10 in melanocyte development was found. Since Sox10 is essential for enteric ganglia formation, the importance of Ets1 on gut innervation was also examined. In mice, Ets1 deletion led to decreased gut innervation, which was exacerbated by Sox10 heterozygosity. At the molecular level, Ets1 was found to activate a Sox10 enhancer critical for Sox10 expression in melanoblasts. Furthermore, mutating Ets1 at a site I characterized in the spontaneous variable spotting mouse pigmentation mutant, led to a 2-fold decrease in enhancer activation. Overexpression and knockdown of Ets1 did not affect Sox10 expression; nonetheless, Ets1 knockdown led to a 6-fold upregulation of the transcription factor Sox9, a gene required for melanocyte and chondrocyte development, but which impairs melanocyte development when its expression is prolonged. Together, these results suggest that Ets1 is required early during melanocyte development for NC cell and melanoblast survival, possibly acting upstream of Sox10. The transcription factor Ets1 may also act indirectly in melanocyte fate specification by repressing Sox9 expression, and consequently cartilage fate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The self-organized morphogenesis of the vertebrate optic cup entails coupling the activation of the retinal gene regulatory network to the constriction-driven infolding of the retinal epithelium. Yet the genetic mechanisms underlying this coordination remain largely unexplored. Through phylogenetic footprinting and transgenesis in zebrafish, here we examine the cis-regulatory landscape of opo, an endocytosis regulator essential for eye morphogenesis. Among the different conserved enhancers identified, we isolate a single retina-specific element (H6_10137) and show that its activity depends on binding sites for the retinal determinant Vsx2. Gain- and loss-of-function experiments and ChIP analyses reveal that Vsx2 regulates opo expression through direct binding to this retinal enhancer. Furthermore, we show that vsx2 knockdown impairs the primary optic cup folding. These data support a model by which vsx2, operating through the effector gene opo, acts as a central transcriptional node that coordinates neural retina patterning and optic cup invagination in zebrafish.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ojoplano (opo) is a vertebrate-specific gene that was first identified in medaka fish as a recessive mutant, showing both neural crest defects and a failure of optic cup folding. In humans, this gene is associated with genetic diseases including hereditary craniofacial malformations and schizophrenia. It is localized in a 2Mb gene desert flanked by insulator sequences, between the genes SLC35B and TFAp2a. This region, syntenic between all vertebrates, represents only 2% of chromosome 6. However, it includes 23% of the all conserved cis-regulatory elements in this chromosome. Using transgenesis assays in zebrafish, we screened the enhancer activity of this locus and obtain a collection of nine enhancers. These regulatory elements were all conserved from human to teleosts and showed epigenetic marks for enhancer activity. We could associate multiple enhancers with ororfacial celfting disease and in order to explore the functionality of the enhancers, we performed a bioinformatics analysis to search for transcription factor bindings in the enhancer sequences. In terms of gene regulation we observe that H6:10137 opo enhancer has two Vsx2 binding sites and that this transcription factor regulates the expression of opo during eye development. Our findings suggest that the regulation of Vsx2 over opo is essential for optic cup folding. So far, there is no clear connection between optic cup patterning and morphogenesis. Vsx2 provides this link by controlling the expression of opo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In gilthead seabream aquaculture, the feed supplies in the market is very expensive due to its high content of animal protein. In this respect, spiruline appears to be a valuable substitute to animal and vegetable protein. In this study we performed two experiments. The scope of the first one was to determine the effect of the inclusion of Spirulina platensis hydrolyzed on the physiological state and growth in juveniles of Sparus aurata. A total of 180 individuals were fed for 128 days with three different feeds: control diet, diet with 2% of hydrolyzed microalgae (Sp2), and diet with 4% of hydrolyzed microalgae (Sp4).The experimental groups were tested in triplicate (except control group that was in duplicate). Biometric parameters were registered every two or three weeks. At the end of the experiment blood samples were collected to analyze plasma metabolites. After this we tried to evaluate the anti-oxidant response in animals remained from the first experiment using a toxicological assay with sodium nitrite lasting three days. Fish were divided into control, Spi 2% and Spi 4%, all them with and without NaNO2. Even then, the plasma metabolites data were collected after 24h and 72h. At the end of the first experiment the administration of S. platensis appeared to have a negative impact on growth of S. aurata respect the control feed. Furthermore, the lactate content registered showed a significant difference between the control and the spiruline administration. In the second experiment the spiruline feed showed a glucose and a lactate content with significant differences after 72h of exposition to nitrites respect the control group due to the interaction between nitrites and treatment. S. platensis hydrolyzed 2% and 4% do not seems a good substitution for S. aurata both as a growth enhancer and improver of health metabolic pathways. Its role as a good antioxidant has not been confirmed in these experiments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multiple Myeloma (MM) is a hematologic cancer with heterogeneous and complex genomic landscape, where Copy Number Alterations (CNAs) play a key role in the disease's pathogenesis and prognosis. It is of biological and clinical interest to study the temporal occurrence of early alterations, as they play a disease "driver" function by deregulating key tumor pathways. This study presents an innovative bioinformatic tools suite created for harmonizing and tracing the origin of CNAs throughout the evolutionary history of MM. To this aim, large cohorts of newly-diagnosed MM (NDMM, N=1582) and Smoldering-MM (SMM, N=282) were aggregated. The tools developed in this study enable the harmonization of CNAs as obtained from different genomic platforms in such a way that a high statistical power can be obtained. By doing so, the high numerosity of those cohorts was harnessed for the identification of novel genes characterized as "driver" (NFKB2, NOTCH2, MAX, EVI5 and MYC-ME2-enhancer), and the generation of an innovative timing model, implemented with a statistical method to introduce confidence intervals in the CNAs-calls. By applying this model on both NDMM and SMM cohorts, it was possible to identify specific CNAs (1q(CKS1B)amp, 13q(RB1)del, 11q(CCND1)amp and 14q(MAX)del) and categorize them as "early"/ "driver" events. A high level of precision was guaranteed by the narrow confidence intervals in the timing estimates. These CNAs were proposed as critical MM alterations, which play a foundational role in the evolutionary history of both SMM and NDMM. Finally, a multivariate survival model was able to identify the independent genomic alterations with the greatest effect on patients’ survival, including RB1-del, CKS1B-amp, MYC-amp, NOTCH2-amp and TRAF3-del/mut. In conclusion, the alterations that were identified as both "early-drivers” and correlated with patients’ survival were proposed as biomarkers that, if included in wider survival models, could provide a better disease stratification and an improved prognosis definition.