936 resultados para ENERGY-ABSORPTION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pyrite and chalcopyrite mineral samples from Mangampet barite mine, Kadapa, Andhra Pradesh, India are used in the present study. XRD data indicate that the pyrite mineral has a face centered cubic lattice structure with lattice constant 5.4179 Å. Also it possesses an average particle size of 91.9 nm. An EPR study on the powdered samples confirms the presence of iron in pyrite and iron and Mn(II) in chalcopyrite. The optical absorption spectrum of chalcopyrite indicates presence of copper which is in a distorted octahedral environment. NIR results confirm the presence of water fundamentals and Raman spectrum reveals the presence of water and sulfate ions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An energy storage system (ESS) can provide ancillary services such as frequency regulation and reserves, as well as smooth the fluctuations of wind power outputs, and hence improve the security and economics of the power system concerned. The combined operation of a wind farm and an ESS has become a widely accepted operating mode. Hence, it appears necessary to consider this operating mode in transmission system expansion planning, and this is an issue to be systematically addressed in this work. Firstly, the relationship between the cost of the NaS based ESS and its discharging cycle life is analyzed. A strategy for the combined operation of a wind farm and an ESS is next presented, so as to have a good compromise between the operating cost of the ESS and the smoothing effect of the fluctuation of wind power outputs. Then, a transmission system expansion planning model is developed with the sum of the transmission investment costs, the investment and operating costs of ESSs and the punishment cost of lost wind energy as the objective function to be minimized. An improved particle swarm optimization algorithm is employed to solve the developed planning model. Finally, the essential features of the developed model and adopted algorithm are demonstrated by 18-bus and 46-bus test systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A composite paraffin-based phase change material (PCM) was prepared by blending composite paraffin and calcined diatomite through the fusion adsorption method. In this study, raw diatomite was purified by thermal treatment in order to improve the adsorption capacity of diatomite, which acted as a carrier material to prepare shape-stabilized PCMs. Two forms of paraffin (paraffin waxes and liquid paraffin) with different melting points were blended together by the fusion method, and the optimum mixed proportion with a suitable phase-transition temperature was obtained through differential scanning calorimetry (DSC) analysis. Then the prepared composite paraffin was adsorbed in calcined diatomite. The prepared paraffin/calcined diatomite composites were characterized by the scanning electron microscope (SEM) and Fourier transformation infrared (FT-IR) analysis techniques. Thermal energy storage properties of the composite PCMs were determined by DSC method. DSC results showed that there was an optimum adsorption ratio between composite paraffin and calcined diatomite and the phase-transition temperature and the latent heat of the composite PCMs were 33.04 ◦C and 89.54 J/g, respectively. Thermal cycling test of composite PCMs showed that the prepared material is thermally reliable and chemically stable. The obtained paraffin/calcined diatomite composites have proper latent heat and melting temperatures, and show practical significance and good potential application value.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The conventional mechanical properties of articular cartilage, such as compressive stiffness, have been demonstrated to be limited in their capacity to distinguish intact (visually normal) from degraded cartilage samples. In this paper, we explore the correlation between a new mechanical parameter, namely the reswelling of articular cartilage following unloading from a given compressive load, and the near infrared (NIR) spectrum. The capacity to distinguish mechanically intact from proteoglycan-depleted tissue relative to the "reswelling" characteristic was first established, and the result was subsequently correlated with the NIR spectral data of the respective tissue samples. To achieve this, normal intact and enzymatically degraded samples were subjected to both NIR probing and mechanical compression based on a load-unload-reswelling protocol. The parameter δ(r), characteristic of the osmotic "reswelling" of the matrix after unloading to a constant small load in the order of the osmotic pressure of cartilage, was obtained for the different sample types. Multivariate statistics was employed to determine the degree of correlation between δ(r) and the NIR absorption spectrum of relevant specimens using Partial Least Squared (PLS) regression. The results show a strong relationship (R(2)=95.89%, p<0.0001) between the spectral data and δ(r). This correlation of δ(r) with NIR spectral data suggests the potential for determining the reswelling characteristics non-destructively. It was also observed that δ(r) values bear a significant relationship with the cartilage matrix integrity, indicated by its proteoglycan content, and can therefore differentiate between normal and artificially degraded proteoglycan-depleted cartilage samples. It is therefore argued that the reswelling of cartilage, which is both biochemical (osmotic) and mechanical (hydrostatic pressure) in origin, could be a strong candidate for characterizing the tissue, especially in regions surrounding focal cartilage defects in joints.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vibration Based Damage Identification Techniques which use modal data or their functions, have received significant research interest in recent years due to their ability to detect damage in structures and hence contribute towards the safety of the structures. In this context, Strain Energy Based Damage Indices (SEDIs), based on modal strain energy, have been successful in localising damage in structuers made of homogeneous materials such as steel. However, their application to reinforced concrete (RC) structures needs further investigation due to the significant difference in the prominent damage type, the flexural crack. The work reported in this paper is an integral part of a comprehensive research program to develop and apply effective strain energy based damage indices to assess damage in reinforced concrete flexural members. This research program established (i) a suitable flexural crack simulation technique, (ii) four improved SEDI's and (iii) programmable sequentional steps to minimise effects of noise. This paper evaluates and ranks the four newly developed SEDIs and existing seven SEDIs for their ability to detect and localise flexural cracks in RC beams. Based on the results of the evaluations, it recommends the SEDIs for use with single and multiple vibration modes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Opening up a band gap and finding a suitable substrate material are two big challenges for building graphene-based nanodevices. Using state-of-the-art hybrid density functional theory incorporating long range dispersion corrections, we investigate the interface between optically active graphitic carbon nitride (g-C3N4) and electronically active graphene. We find an inhomogeneous planar substrate (g-C3N4) promotes electronrich and hole-rich regions, i.e., forming a well-defined electron−hole puddle, on the supported graphene layer. The composite displays significant charge transfer from graphene to the g-C3N4 substrate, which alters the electronic properties of both components. In particular, the strong electronic coupling at the graphene/g-C3N4 interface opens a 70 meV gap in g-C3N4-supported graphene, a feature that can potentially allow overcoming the graphene’s band gap hurdle in constructing field effect transistors. Additionally, the 2-D planar structure of g-C3N4 is free of dangling bonds, providing an ideal substrate for graphene to sit on. Furthermore, when compared to a pure g-C3N4 monolayer, the hybrid graphene/g-C3N4 complex displays an enhanced optical absorption in the visible region, a promising feature for novel photovoltaic and photocatalytic applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrogenation kinetics of Mg is slow, impeding its application for mobile hydrogen storage. We demonstrate by ab initio density functional theory (DFT) calculations that the reaction path can be greatly modified by adding transition metal catalysts. Contrasting with Ti doping, a Pd dopant will result in a very small activation barrier for both dissociation of molecular hydrogen and diffusion of atomic H on the Mg surface. This new computational finding supports for the first time by ab initio simulationthe proposed hydrogen spillover mechanism for rationalizing experimentally observed fast hydrogenation kinetics for Pd-capped Mg materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GPS is a commonly used and convenient technology for determining absolute position in outdoor environments, but its high power consumption leads to rapid battery depletion in mobile devices. An obvious solution is to duty cycle the GPS module, which prolongs the device lifetime at the cost of increased position uncertainty while the GPS is off. This article addresses the trade-off between energy consumption and localization performance in a mobile sensor network application. The focus is on augmenting GPS location with more energy-efficient location sensors to bound position estimate uncertainty while GPS is off. Empirical GPS and radio contact data from a large-scale animal tracking deployment is used to model node mobility, radio performance, and GPS. Because GPS takes a considerable, and variable, time after powering up before it delivers a good position measurement, we model the GPS behaviour through empirical measurements of two GPS modules. These models are then used to explore duty cycling strategies for maintaining position uncertainty within specified bounds. We then explore the benefits of using short-range radio contact logging alongside GPS as an energy-inexpensive means of lowering uncertainty while the GPS is off, and we propose strategies that use RSSI ranging and GPS back-offs to further reduce energy consumption. Results show that our combined strategies can cut node energy consumption by one third while still meeting application-specific positioning criteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neutron Compton scattering (NCS) measurements of the anisotropy of the momentum distribution and the mean Laplacian of the interatomic potential ∇2V have been performed using electron volt neutrons, with wave vector transfers between 24 Å−1 and 98 Å−1. The measured momentum distribution of the atoms displays significantly more anisotropy than a calculation using a model density of states. We have observed anisotropies in ∇2V for the first time. The results suggest that the atomic potential is harmonic within the graphite planes, but anharmonic for vibrations perpendicular to the planes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deep inelastic neutron scattering measurements on liquid 3He-4He mixtures in the normal phase have been performed on the VESUVIO spectrometer at the ISIS pulsed neutron source at exchanged wave vectors of about q≃120.0Å-1. The neutron Compton profiles J(y) of the mixtures were measured along the T=1.96K isotherm for 3He concentrations, x, ranging from 0.1 to 1.0 at saturated vapor pressures. Values of kinetic energies 〈T〉 of 3He and 4He atoms as a function of x, 〈T〉(x), were extracted from the second moment of J(y). The present determinations of 〈T〉(x) confirm previous experimental findings for both isotopes and, in the case of 3He, a substantial disagreement with theory is found. In particular 〈T〉(x) for the 3He atoms is found to be independent of concentration yielding a value 〈T〉3(x=0.1)≃12K, much lower than the value suggested by the most recent theoretical estimates of approximately 19 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report discusses the geologic framework and petroleum geology used to assess undiscovered petroleum resources in the Bohaiwan basin province for the 2000 World Energy Assessment Project of the U.S. Geological Survey. The Bohaiwan basin in northeastern China is the largest petroleum-producing region in China. Two total petroleum systems have been identified in the basin. The first, the Shahejie–Shahejie/Guantao/Wumishan Total Petroleum System, involves oil and gas generated from mature pods of lacustrine source rock that are associated with six major rift-controlled subbasins. Two assessment units are defined in this total petroleum system: (1) a Tertiary lacustrine assessment unit consisting of sandstone reservoirs interbedded with lacustrine shale source rocks, and (2) a pre-Tertiary buried hills assessment unit consisting of carbonate reservoirs that are overlain unconformably by Tertiary lacustrine shale source rocks. The second total petroleum system identified in the Bohaiwan basin is the Carboniferous/Permian Coal–Paleozoic Total Petroleum System, a hypothetical total petroleum system involving natural gas generated from multiple pods of thermally mature coal beds. Low-permeability Permian sandstones and possibly Carboniferous coal beds are the reservoir rocks. Most of the natural gas is inferred to be trapped in continuous accumulations near the center of the subbasins. This total petroleum system is largely unexplored and has good potential for undiscovered gas accumulations. One assessment unit, coal-sourced gas, is defined in this total petroleum system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Damage assessment (damage detection, localization and quantification) in structures and appropriate retrofitting will enable the safe and efficient function of the structures. In this context, many Vibration Based Damage Identification Techniques (VBDIT) have emerged with potential for accurate damage assessment. VBDITs have achieved significant research interest in recent years, mainly due to their non-destructive nature and ability to assess inaccessible and invisible damage locations. Damage Index (DI) methods are also vibration based, but they are not based on the structural model. DI methods are fast and inexpensive compared to the model-based methods and have the ability to automate the damage detection process. DI method analyses the change in vibration response of the structure between two states so that the damage can be identified. Extensive research has been carried out to apply the DI method to assess damage in steel structures. Comparatively, there has been very little research interest in the use of DI methods to assess damage in Reinforced Concrete (RC) structures due to the complexity of simulating the predominant damage type, the flexural crack. Flexural cracks in RC beams distribute non- linearly and propagate along all directions. Secondary cracks extend more rapidly along the longitudinal and transverse directions of a RC structure than propagation of existing cracks in the depth direction due to stress distribution caused by the tensile reinforcement. Simplified damage simulation techniques (such as reductions in the modulus or section depth or use of rotational spring elements) that have been extensively used with research on steel structures, cannot be applied to simulate flexural cracks in RC elements. This highlights a big gap in knowledge and as a consequence VBDITs have not been successfully applied to damage assessment in RC structures. This research will address the above gap in knowledge and will develop and apply a modal strain energy based DI method to assess damage in RC flexural members. Firstly, this research evaluated different damage simulation techniques and recommended an appropriate technique to simulate the post cracking behaviour of RC structures. The ABAQUS finite element package was used throughout the study with properly validated material models. The damaged plasticity model was recommended as the method which can correctly simulate the post cracking behaviour of RC structures and was used in the rest of this study. Four different forms of Modal Strain Energy based Damage Indices (MSEDIs) were proposed to improve the damage assessment capability by minimising the numbers and intensities of false alarms. The developed MSEDIs were then used to automate the damage detection process by incorporating programmable algorithms. The developed algorithms have the ability to identify common issues associated with the vibration properties such as mode shifting and phase change. To minimise the effect of noise on the DI calculation process, this research proposed a sequential order of curve fitting technique. Finally, a statistical based damage assessment scheme was proposed to enhance the reliability of the damage assessment results. The proposed techniques were applied to locate damage in RC beams and slabs on girder bridge model to demonstrate their accuracy and efficiency. The outcomes of this research will make a significant contribution to the technical knowledge of VBDIT and will enhance the accuracy of damage assessment in RC structures. The application of the research findings to RC flexural members will enable their safe and efficient performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although there is an increasing recognition of the impacts of climate change on communities, residents often resist changing their lifestyle to reduce the effects of the problem. By using a landscape architectural design medium, this paper argues that public space, when designed as an ecological system, has the capacity to create social and environmental change and to increase the quality of the human environment. At the same time, this ecological system can engage residents, enrich the local economy, and increase the social network. Through methods of design, research and case study analysis, an alternative master plan is proposed for a sustainable tourism development in Alacati, Turkey. Our master plan uses local geographical, economic and social information within a sustainable landscape architectural design scheme that addresses the key issues of ecology, employment, public space and community cohesion. A preliminary community empowerment model (CEM) is proposed to manage the designs. The designs address: the coexistence of local agricultural and sustainable energy generation; state of the art water management; and the functional and sustainable social and economic interrelationship of inhabitants, NGOs, and local government.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energy represents the cornerstone of modern life. However, current patterns of energy production are unsustainable. This is true for both the developed and developing worlds. In this context, this paper considers how, from a conceptual perspective, the law can contribute to more sustainable patterns of energy production can be addressed. The approach that this paper adopts is to consider two of the most important concepts that are relevant to the governance of modern environmental and societal challenges: human dignity and sustainable development. It is within this context that this paper contends that the convergence of these concepts provides the platform for a novel approach to encourage the sustainable production of energy by way of a ‘right to sustainable energy’. With this in mind, this paper considers the forum in which a right to sustainable energy may be developed and outlines the content of the proposed right.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diet Induced Thermogenesis (DIT) is the energy expended consequent to meal consumption, and reflects the energy required for the processing and digestion of food consumed throughout each day. Although DIT is the total energy expended across a day in digestive processes to a number of meals, most studies measure thermogenesis in response to a single meal (Meal Induced Thermogenesis: MIT) as a representation of an individual’s thermogenic response to acute food ingestion. As a component of energy expenditure, DIT may have a contributing role in weight gain and weight loss. While the evidence is inconsistent, research has tended to reveal a suppressed MIT response in obese compared to lean individuals, which identifies individuals with an efficient storage of food energy, hence a greater tendency for weight gain. Appetite is another factor regulating body weight through its influence on energy intake. Preliminary research has shown a potential link between MIT and postprandial appetite as both are responses to food ingestion and have a similar response dependent upon the macronutrient content of food. There is a growing interest in understanding how both MIT and appetite are modified with changes in diet, activity levels and body size. However, the findings from MIT research have been highly inconsistent, potentially due to the vastly divergent protocols used for its measurement. Therefore, the main theme of this thesis was firstly, to address some of the methodological issues associated with measuring MIT. Additionally this thesis aimed to measure postprandial appetite simultaneously to MIT to test for any relationships between these meal-induced variables and to assess changes that occur in MIT and postprandial appetite during periods of energy restriction (ER) and following weight loss. Two separate studies were conducted to achieve these aims. Based on the increasing prevalence of obesity, it is important to develop accurate methodologies for measuring the components potentially contributing to its development and to understand the variability within these variables. Therefore, the aim of Study One was to establish a protocol for measuring the thermogenic response to a single test meal (MIT), as a representation of DIT across a day. This was done by determining the reproducibility of MIT with a continuous measurement protocol and determining the effect of measurement duration. The benefit of a fixed resting metabolic rate (RMR), which is a single measure of RMR used to calculate each subsequent measure of MIT, compared to separate baseline RMRs, which are separate measures of RMR measured immediately prior to each MIT test meal to calculate each measure of MIT, was also assessed to determine the method with greater reproducibility. Subsidiary aims were to measure postprandial appetite simultaneously to MIT, to determine its reproducibility between days and to assess potential relationships between these two variables. Ten healthy individuals (5 males, 5 females, age = 30.2 ± 7.6 years, BMI = 22.3 ± 1.9 kg/m2, %Fat Mass = 27.6 ± 5.9%) undertook three testing sessions within a 1-4 week time period. During the first visit, participants had their body composition measured using DXA for descriptive purposes, then had an initial 30-minute measure of RMR to familiarise them with the testing and to be used as a fixed baseline for calculating MIT. During the second and third testing sessions, MIT was measured. Measures of RMR and MIT were undertaken using a metabolic cart with a ventilated hood to measure energy expenditure via indirect calorimetry with participants in a semi-reclined position. The procedure on each MIT test day was: 1) a baseline RMR measured for 30 minutes, 2) a 15-minute break in the measure to consume a standard 576 kcal breakfast (54.3% CHO, 14.3% PRO, 31.4% FAT), comprising muesli, milk toast, butter, jam and juice, and 3) six hours of measuring MIT with two, ten-minute breaks at 3 and 4.5 hours for participants to visit the bathroom. On the MIT test days, pre and post breakfast then at 45-minute intervals, participants rated their subjective appetite, alertness and comfort on visual analogue scales (VAS). Prior to each test, participants were required to be fasted for 12 hours, and have undertaken no high intensity physical activity for the previous 48 hours. Despite no significant group changes in the MIT response between days, individual variability was high with an average between-day CV of 33%, which was not significantly improved by the use of a fixed RMR to 31%. The 95% limits of agreements which ranged from 9.9% of energy intake (%EI) to -10.7%EI with the baseline RMRs and between 9.6%EI to -12.4%EI with the fixed RMR, indicated very large changes relative to the size of the average MIT response (MIT 1: 8.4%EI, 13.3%EI; MIT 2: 8.8%EI, 14.7%EI; baseline and fixed RMRs respectively). After just three hours, the between-day CV with the baseline RMR was 26%, which may indicate an enhanced MIT reproducibility with shorter measurement durations. On average, 76, 89, and 96% of the six-hour MIT response was completed within three, four and five hours, respectively. Strong correlations were found between MIT at each of these time points and the total six-hour MIT (range for correlations r = 0.990 to 0.998; P < 0.01). The reproducibility of the proportion of the six-hour MIT completed at 3, 4 and 5 hours was reproducible (between-day CVs ≤ 8.5%). This indicated the suitability to use shorter durations on repeated occasions and a similar percent of the total response to be completed. There was a lack of strong evidence of any relationship between the magnitude of the MIT response and subjective postprandial appetite. Given a six-hour protocol places a considerable burden on participants, these results suggests that a post-meal measurement period of only three hours is sufficient to produce valid information on the metabolic response to a meal. However while there was no mean change in MIT between test days, individual variability was large. Further research is required to better understand which factors best explain the between-day variability in this physiological measure. With such a high prevalence of obesity, dieting has become a necessity to reduce body weight. However, during periods of ER, metabolic and appetite adaptations can occur which may impede weight loss. Understanding how metabolic and appetite factors change during ER and weight loss is important for designing optimal weight loss protocols. The purpose of Study Two was to measure the changes in the MIT response and subjective postprandial appetite during either continuous (CONT) or intermittent (INT) ER and following post diet energy balance (post-diet EB). Thirty-six obese male participants were randomly assigned to either the CONT (Age = 38.6 ± 7.0 years, weight = 109.8 ± 9.2 kg, % fat mass = 38.2 ± 5.2%) or INT diet groups (Age = 39.1 ± 9.1 years, weight = 107.1 ± 12.5 kg, % fat mass = 39.6 ± 6.8%). The study was divided into three phases: a four-week baseline (BL) phase where participants were provided with a diet to maintain body weight, an ER phase lasting either 16 (CONT) or 30 (INT) weeks, where participants were provided with a diet which supplied 67% of their energy balance requirements to induce weight loss and an eight-week post-diet EB phase, providing a diet to maintain body weight post weight loss. The INT ER phase was delivered as eight, two-week blocks of ER interspersed with two-week blocks designed to achieve weight maintenance. Energy requirements for each phase were predicted based on measured RMR, and adjusted throughout the study to account for changes in RMR. All participants completed MIT and appetite tests during BL and the ER phase. Nine CONT and 15 INT participants completed the post-diet EB MIT and 14 INT and 15 CONT participants completed the post-diet EB appetite tests. The MIT test day protocol was as follows: 1) a baseline RMR measured for 30 minutes, 2) a 15-minute break in the measure to consume a standard breakfast meal (874 kcal, 53.3% CHO, 14.5% PRO, 32.2% FAT), and 3) three hours of measuring MIT. MIT was calculated as the energy expenditure above the pre-meal RMR. Appetite test days were undertaken on a separate day using the same 576 kcal breakfast used in Study One. VAS were used to assess appetite pre and post breakfast, at one hour post breakfast then a further three times at 45-minute intervals. Appetite ratings were calculated for hunger and fullness as both the intra-meal change in appetite and the AUC. The three-hour MIT response at BL, ER and post-diet EB respectively were 5.4 ± 1.4%EI, 5.1 ± 1.3%EI and 5.0 ± 0.8%EI for the CONT group and 4.4 ± 1.0%EI, 4.7 ± 1.0%EI and 4.8 ± 0.8%EI for the INT group. Compared to BL, neither group had significant changes in their MIT response during ER or post-diet EB. There were no significant time by group interactions (p = 0.17) indicating a similar response to ER and post-diet EB in both groups. Contrary to what was hypothesised, there was a significant increase in postprandial AUC fullness in response to ER in both groups (p < 0.05). However, there were no significant changes in any of the other postprandial hunger or fullness variables. Despite no changes in MIT in both the CONT or INT group in response to ER or post-diet EB and only a minor increase in postprandial AUC fullness, the individual changes in MIT and postprandial appetite in response to ER were large. However those with the greatest MIT changes did not have the greatest changes in postprandial appetite. This study shows that postprandial appetite and MIT are unlikely to be altered during ER and are unlikely to hinder weight loss. Additionally, there were no changes in MIT in response to weight loss, indicating that body weight did not influence the magnitude of the MIT response. There were large individual changes in both variables, however further research is required to determine whether these changes were real compensatory changes to ER or simply between-day variation. Overall, the results of this thesis add to the current literature by showing the large variability of continuous MIT measurements, which make it difficult to compare MIT between groups and in response to diet interventions. This thesis was able to provide evidence to suggest that shorter measures may provide equally valid information about the total MIT response and can therefore be utilised in future research in order to reduce the burden of long measurements durations. This thesis indicates that MIT and postprandial subjective appetite are most likely independent of each other. This thesis also shows that, on average, energy restriction was not associated with compensatory changes in MIT and postprandial appetite that would have impeded weight loss. However, the large inter-individual variability supports the need to examine individual responses in more detail.