697 resultados para E3 ligase
Resumo:
Genotoxic stress activation of the tumor suppressor transcription factor p53 involves post-translational C-terminal modifications that increase both protein stability and DNA binding activity. We compared the requirement for p53 protein activation of p53 target sequences in two major p53-regulated genes, p21/WAF1 (encoding a cell cycle inhibitory protein) and Mdm2 (encoding a ubiquitin ligase that targets p53 for proteolytic degradation). The p53 binding site in the proximal p21/WAF1 promoter contains a single p53 binding consensus sequence, while the p53 binding site in the Mdm2 promoter contains two consensus sequences linked by a 17 bp spacer. Binding of recombinant p53 protein to the p21/WAF1 binding site required monoclonal antibody PAb421, which can mimic activating phosphorylation and/or acetylation events at the C-terminus. In contrast, recombinant p53 bound strongly to the Mdm2 binding site in the absence of PAb421 antibody. Separate binding to each consensus sequence of the Mdm2 binding site still required PAb421, indicating that p53 binding was not simply due to greater affinity to the Mdm2 consensus sequences. Linking two p21/WAF1 binding sites with the 17 bp spacer region from the Mdm2 gene eliminated the PAb421 requirement for p53 binding to the p21/WAF1 site. These results suggest a mechanism for regulation of Mdm2 gene transcription that differs from that other p53-induced genes by its lack of a requirement for C-terminal activation of p53 protein. A steady induction of Mdm2 protein would maintain p53 protein at low levels until post-translational modifications following DNA damage increased p53 activity towards other genes, mediating p53 growth inhibitory and apoptotic activities.
Resumo:
The intracellular levels of many proteins are regulated by ubiquitin-dependent proteolysis. One of the best-characterized enzymes that catalyzes the attachment of ubiquitin to proteins is a ubiquitin ligase complex, Skp1-Cullin-F box complex containing Hrt1 (SCF). We sought to artificially target a protein to the SCF complex for ubiquitination and degradation. To this end, we tested methionine aminopeptidase-2 (MetAP-2), which covalently binds the angiogenesis inhibitor ovalicin. A chimeric compound, protein-targeting chimeric molecule 1 (Protac-1), was synthesized to recruit MetAP-2 to SCF. One domain of Protac-1 contains the IκBα phosphopeptide that is recognized by the F-box protein β-TRCP, whereas the other domain is composed of ovalicin. We show that MetAP-2 can be tethered to SCFβ-TRCP, ubiquitinated, and degraded in a Protac-1-dependent manner. In the future, this approach may be useful for conditional inactivation of proteins, and for targeting disease-causing proteins for destruction.
Resumo:
All eukaryotic DNA transposons reported so far belong to a single category of elements transposed by the so-called “cut-and-paste” mechanism. Here, we report a previously unknown category of eukaryotic DNA transposons, Helitron, which transpose by rolling-circle replication. Autonomous Helitrons encode a 5′-to-3′ DNA helicase and nuclease/ligase similar to those encoded by known rolling-circle replicons. Helitron-like transposons have conservative 5′-TC and CTRR-3′ termini and do not have terminal inverted repeats. They contain 16- to 20-bp hairpins separated by 10–12 nucleotides from the 3′-end and transpose precisely between the 5′-A and T-3′, with no modifications of the AT target sites. Together with their multiple diverged nonautonomous descendants, Helitrons constitute ≈2% of both the Arabidopsis thaliana and Caenorhabditis elegans genomes and also colonize the Oriza sativa genome. Sequence conservation suggests that Helitrons continue to be transposed.
Resumo:
Recent studies on proteins whose N and C termini are in close proximity have demonstrated that folding of polypeptide chains and assembly of oligomers can be accomplished with circularly permuted chains. As yet no methodical study has been conducted to determine how extensively new termini can be introduced and where such termini cannot be tolerated. We have devised a procedure to generate random circular permutations of the catalytic chains of Escherichia coli aspartate transcarbamoylase (ATCase; EC 2.1.3.2) and to select clones that produce active or stable holoenzyme containing permuted chains. A tandem gene construct was made, based on the desired linkage between amino acid residues in the C- and N-terminal regions of the polypeptide chain, and this DNA was treated with a suitable restriction enzyme to yield a fragment containing the rearranged coding sequence for the chain. Circularization achieved with DNA ligase, followed by linearization at random with DNase I, and incorporation of the linearized, repaired, blunt-ended, rearranged genes into a suitable plasmid permitted the expression of randomly permuted polypeptide chains. The plasmid with appropriate stop codons also contained pyrI, the gene encoding the regulatory chain of ATCase. Colonies expressing detectable amounts of ATCase-like molecules containing permuted catalytic chains were identified by an immunoblot technique or by their ability to grow in the absence of pyrimidines in the growth medium. Sequencing of positive clones revealed a variety of novel circular permutations. Some had N and C termini within helices of the wild-type enzyme as well as deletions and insertions. Permutations were concentrated in the C-terminal domain and only few were detected in the N-terminal domain. The technique, which is adaptable generally to proteins whose N and C termini are near each other, can be of value in relating in vivo folding of nascent, growing polypeptide chains to in vitro renaturation of complete chains and determining the role of protein sequence in folding kinetics.
Resumo:
The effect of Fos and Jun binding on the structure of the AP-1 recognition site is controversial. Results from phasing analysis and phase-sensitive detection studies of DNA bending by Fos and Jun have led to opposite conclusions. The differences between these assays, the length of the spacer between two bends and the length of the sequences flanking the bends, are investigated here using intrinsic DNA bend standards. Both an increase in the spacer length as well as a decrease in the length of flanking sequences resulted in a reduction in the phase-dependent variation in electrophoretic mobilities. Probes with a wide separation between the bends and short flanking sequences, such as those used in the phase-sensitive detection studies, displayed no phase-dependent mobility variation. This shape-dependent variation in electrophoretic mobilities was reproduced by complexes formed by truncated Fos and Jun. Results from ligase-catalyzed cyclization experiments have been interpreted to indicate the absence of DNA bending in the Fos-Jun-AP-1 complex. However, truncated Fos and Jun can alter the relative rates of inter- and intramolecular ligation through mechanisms unrelated to DNA bending, confounding the interpretation of cyclization data. The analogous phase- and shape-dependence of the electrophoretic mobilities of the Fos-Jun-AP-1 complex and an intrinsic DNA bend confirm that Fos and Jun bend DNA, which may contribute to their functions in transcription regulation.
Resumo:
A method was developed to detect 5' ends of bacterial RNAs expressed at low levels and to differentiate newly initiated transcripts from processed transcripts produced in vivo. The procedure involves use of RNA ligase to link a specific oligoribonucleotide to the 5' ends of cellular RNAs, followed by production of cDNA and amplification of the gene of interest by PCR. The method was used to identify the precise sites of transcription initiation within a 10-kb region of the pheromone-inducible conjugative plasmid pCF10 of Enterococcus faecalis. Results confirmed the 5' end of a very abundant, constitutively produced transcript (from prgQ) that had been mapped previously by primer extension and defined the initiation point of a less abundant, divergently transcribed message (from prgX). The method also showed that the 5' end of a pheromone-inducible transcript (prgB) that had been mapped by primer extension was generated by processing rather than new initiation. In addition, the results provided evidence for two promoters, 3 and 5 kb upstream of prgB, and indicated that only the transcripts originating 5 kb upstream may be capable of extending to prgB.
Resumo:
Recent experiments have exposed significant discrepancies between experimental data and predictive models for DNA structure. These results strongly suggest that DNA structural parameters incorporated in the models are not always sufficient to account for the influence of sequence context and of specific ion effects. In an attempt to evaluate these two effects, we have investigated repetitive DNA sequences with the sequence motif GAGAG.CTCTC located in different helical phasing arrangements with respect to poly(A) tracts and GGGCCC.GGGCCC sequence motifs. Methods used are ligase-mediated cyclization and gel mobility experiments along with DNase I cutting and chemical probe studies. The results provide new evidence for curvature in poly(A) tracts. They also show that the sequence context in which bending and flexible sequence elements are found is an important aspect of sequence-dependent DNA conformation. Although dinucleotide models generally have good predictive power, this work demonstrates that in some instances sequence elements larger than the dinucleotide must be taken into account, and hence it provides a starting point for the appropriate modification and refinement of existing structural models for DNA.
Resumo:
The broad host range plasmid RK2 replicates and regulates its copy number in a wide range of Gram-negative bacteria. The plasmid-encoded trans-acting replication protein TrfA and the origin of replication oriV are sufficient for controlled replication of the plasmid in all Gram-negative bacteria tested. The TrfA protein binds specifically to direct repeat sequences (iterons) at the origin of replication. A replication control model, designated handcuffing or coupling, has been proposed whereby the formation of coupled TrfA-oriV complexes between plasmid molecules results in hindrance of origin activity and, consequently, a shut-down of plasmid replication under conditions of higher than normal copy number. Therefore, according to this model, the coupling activity of an initiation protein is essential for copy number control and a copy-up initiation protein mutant should have reduced ability to form coupled complexes. To test this model for plasmid RK2, two previously characterized copy-up TrfA mutations, trfA-254D and trfA-267L, were combined and the resulting copy-up double mutant TFrfA protein TrfA-254D/267L was characterized. Despite initiating runaway (uncontrolled) replication in vivo, the copy-up double-mutant TrfA protein exhibited replication kinetics similar to the wild-type protein in vitro. Purified TrfA-254D, TrfA-267L, and TrfA-254D/267L proteins were then examined for binding to the iterons and for coupling activity using an in vitro ligase-catalyzed multimerization assay. It was found that both single and double TrfA mutant proteins exhibited substantially reduced (single mutants) or barely detectable (double mutant) levels of coupling activity while not being diminished in their capacity to bind to the origin of replication. These observations provide direct evidence in support of the coupling model of replication control.
Resumo:
Slow potential recording was used for long-term monitoring of the penumbra zone surrounding an ischemic region produced by middle cerebral artery (MCA) occlusion in adult hooded rats (n = 32). Four capillary electrodes (El-E4) were chronically implanted at 2-mm intervals from AP -3, L 2 (El) to AP 0, L 5 (E4). Spontaneous or evoked slow potential waves of spreading depression (SD) were recorded during and 4 h after a 1-h MCA occlusion and at 2- to 3-day intervals afterward for 3 weeks. Duration of the initial focal ischemic depolarization was maximal at E4 and decreased with distance from the focus. SD waves in the penumbra zone were high at El and E2, low and prolonged at E3, and almost absent at E4. Amplitude of elicited SD waves was further reduced 3 days later and slowly increased in the following week. Cortical areas displaying marked reduction of SD waves in the first days after MCA occlusion either remained low or showed substantial (60%) recovery, the probability of which decreased with the duration of the initial focal ischemic depolarization and increased with the distance from the focus. It is concluded that the outcome of ischemia monitored by long-term SD recovery in the perifocal region can be partly predicted from the acute signs of MCA occlusion.
Resumo:
The crystal structure of pyruvate phosphate dikinase, a histidyl multiphosphotransfer enzyme that synthesizes adenosine triphosphate, reveals a three-domain molecule in which the phosphohistidine domain is flanked by the nucleotide and the phosphoenolpyruvate/pyruvate domains, with the two substrate binding sites approximately 45 angstroms apart. The modes of substrate binding have been deduced by analogy to D-Ala-D-Ala ligase and to pyruvate kinase. Coupling between the two remote active sites is facilitated by two conformational states of the phosphohistidine domain. While the crystal structure represents the state of interaction with the nucleotide, the second state is achieved by swiveling around two flexible peptide linkers. This dramatic conformational transition brings the phosphocarrier residue in close proximity to phosphoenolpyruvate/pyruvate. The swiveling-domain paradigm provides an effective mechanism for communication in complex multidomain/multiactive site proteins.
Resumo:
An entire gene encoding wheat (var. Hard Red Winter Tam 107) acetyl-CoA carboxylase [ACCase; acetyl-CoA:carbon-dioxide ligase (ADP-forming), EC 6.4.1.2] has been cloned and sequenced. Comparison of the 12-kb genomic sequence with the 7.4-kb cDNA sequence reported previously revealed 29 introns. Within the coding region, the exon sequence is 98% identical to the known wheat cDNA sequence. A second ACCase gene was identified by sequencing fragments of genomic clones that include the first two exons and the first intron. Additional transcripts were detected by 5' and 3' RACE analysis (rapid amplification of cDNA ends). One set of transcripts had a 5' end sequence identical to the cDNA found previously and another set was identical to the gene reported here. The 3' RACE clones fall into four distinguishable sequence sets, bringing the number of ACCase sequences to six. None of these cDNA or genomic clones encodes a chloroplast targeting signal. Identification of six different sequences suggests that either the cytosolic ACCase genes are duplicated in the three chromosome sets in hexaploid wheat or that each of the six alleles of the cytosolic ACCase gene has a readily distinguishable DNA sequence.
Resumo:
Using a cell-free system for UV mutagenesis, we have previously demonstrated the existence of a mutagenic pathway associated with nucleotide-excision repair gaps. Here, we report that this pathway can be reconstituted by using six purified proteins: UvrA, UvrB, UvrC, DNA helicase II, DNA polymerase III core, and DNA ligase. This establishes the minimal requirements for repair-gap UV mutagenesis. DNA polymerase II could replace DNA polymerase III, although less effectively, whereas DNA polymerase I, the major repair polymerase, could not. DNA sequence analysis of mutations generated in the in vitro reaction revealed a spectrum typical of mutations targeted to UV lesions. These observations suggest that repair-gap UV mutagenesis is performed by DNA polymerase III, and to a lesser extent by DNA polymerase II, by filling-in of a rare class of excision gaps that contain UV lesions.
Resumo:
To gain insight into the regulation of expression of peroxisome proliferator-activated receptor (PPAR) isoforms, we have determined the structural organization of the mouse PPAR gamma (mPPAR gamma) gene. This gene extends > 105 kb and gives rise to two mRNAs (mPPAR gamma 1 and mPPAR gamma 2) that differ at their 5' ends. The mPPAR gamma 2 cDNA encodes an additional 30 amino acids N-terminal to the first ATG codon of mPPAR gamma 1 and reveals a different 5' untranslated sequence. We show that mPPAR gamma 1 mRNA is encoded by eight exons, whereas the mPPAR gamma 2 mRNA is encoded by seven exons. Most of the 5' untranslated sequence of mPPAR gamma 1 mRNA is encoded by two exons, whereas the 5' untranslated sequence and the extra 30 N-terminal amino acids of mPPAR gamma 2 are encoded by one exon, which is located between the second and third exons coding for mPPAR gamma 1. The last six exons of mPPAR gamma gene code for identical sequences in mPPAR gamma 1 and mPPAR gamma 2 isoforms. The mPPAR gamma 1 and mPPAR gamma 2 isoforms are transcribed from different promoters. The mPPAR gamma gene has been mapped to chromosome 6 E3-F1 by in situ hybridization using a biotin-labeled probe. These results establish that at least one of the PPAR genes yields more than one protein product, similar to that encountered with retinoid X receptor and retinoic acid receptor genes. The existence of multiple PPAR isoforms transcribed from different promoters could increase the diversity of ligand and tissue-specific transcriptional responses.
Resumo:
The adenovirus (Ad) early region 3 (E3) genes code for at least four proteins that inhibit the host immune responses mediated by cytotoxic T lymphocytes and tumor necrosis factor alpha. To evaluate the potential use of these immunoregulatory viral functions in facilitating allogeneic cell transplantation, the Ad E3 genes were expressed in pancreatic beta cells in transgenic mice under control of the rat insulin II promoter. Transgenic H-2b/d (C57BL/6 x BALB/c) islets, expressing the Ad E3 genes, remained viable for at least 94 days after transplantation under the kidney capsule of BALB/c (H-2d) recipients. Nontransgenic H-2b/d control islets were rejected as anticipated between 14 and 28 days. Histological analysis of the transplanted transgenic islets revealed normal architecture. Immunohistochemical studies with antisera to islet hormones revealed the presence of both beta and non-beta islet cells, suggesting a propagation of the immunosuppressive effect of Ad proteins from beta cells to other islet cells. The use of viral genes, which have evolved to regulate virus-host interactions, to immunosupress the anti-genicity of donor transplant tissue suggests additional ways for prolonging allograft survival. In addition, these findings have implications for designing Ad vectors for gene therapy.
Resumo:
We describe a complete gene family encoding phenylalanine ammonia-lyase (PAL; EC 4.3.1.5) in one particular plant species. In parsley (Petroselinum crispum), the PAL gene family comprises two closely related members, PAL1 and PAL2, whose TATA-proximal promoter and coding regions are almost identical, and two additional members, PAL3 and PAL4, with less similarity to one another and to the PAL1 and PAL2 genes. Using gene-specific probes derived from the 5' untranslated regions of PAL1/2, PAL3, and PAL4, we determined the respective mRNA levels in parsley leaves and cell cultures treated with UV light or fungal elicitor and in wounded leaves and roots. For comparison, the functionally closely related cinnamate 4-hydroxylase (C4H) and 4-coumarate:CoA ligase (4CL) mRNAs were measured in parallel. The results indicate various degrees of differential responsiveness of PAL4 relative to the other PAL gene family members, in contrast to a high degree of coordination in the overall expression of the PAL, C4H, and 4CL genes. The only significant sequence similarities shared by all four PAL gene promoters are a TATA-proximal set of three putative cis-acting elements (boxes P, A, and L). None of these elements alone, or the promoter region containing all of them together, conferred elicitor or light responsiveness on a reporter gene in transient expression assays. The elements appear to be necessary but not sufficient for elicitor- or light-mediated PAL gene activation, similar to the situation previously reported for 4CL.