985 resultados para Drought resistant wheat
Resumo:
概述了张掖市农科院小麦诱变育种研究的发展历程,介绍了小麦诱变育种的常用方法及辐照处理的参考剂量,并对张掖市小麦诱变育种今后发展的方向进行了探讨。
Resumo:
以栽培一粒(2n)、栽培二粒(4n)和长武134(6n)为材料在大型活动防雨棚条件下研究不同倍性小麦材料在不同密度和水分条件下的产量适应性变化。结果发现,在两种水分条件下随着染色体倍性从2n→6n的增加,产量、千粒重、水分利用效率(WUE)和收获指数均呈增加趋势,在水分胁迫下各材料穗粒数和穗数则呈降低趋势,而在正常供水下穗粒数则呈增加趋势。在水分胁迫下栽培一粒、栽培二粒和长武134最高产量分别出现在中、低、高密度群体,而同一材料不同密度群体间变异系数分别为6.73%,1.98%,9.07%;不同倍性材料千粒重均随着密度增加而减小,而穗数则逐渐增加,二倍体的穗粒数以中密度最高,四倍体的穗粒数随着群体密度的增加而减小,六倍体则相反;三种材料WUE和收获指数分别以低、高、低密度最高。正常供水下随着染色体倍性从2n→6n的增加,三个倍性材料最高产量分别出现在高、低、低密度群体,而同一材料不同密度群体间变异系数分别为6.01%,17.12%,2.46%;千粒重表现为中密度>低密度>高密度,而穗粒数均以低密度群体最高,二倍体和四倍体以高密度群体最低,六倍体则以中密度群体最低,穗数则随着密度群体增加而增加;二倍体WUE以高...
Resumo:
利用模拟土柱研究了不同水分和氮素营养条件下春小麦根系的生理生态反应。结果表明 ,适量施氮 (尿素 60 0kg/hm2 )增加了总根重和深层土壤中的根重 ,改善了根系的水分关系 ,提高了细胞膜的稳定性 ,因而有助于提高小麦的抗旱性 ;过量施氮 (尿素 150 0kg/hm2 )增加上层根重对抗旱性的意义并不大。严重水分胁迫下 ,过量施氮导致根细胞膜伤害率明显增加 ,根系水分关系恶化 ,根系保水能力下降 ,使小麦抗旱性降低
Resumo:
比较研究了氮磷营养对春小麦水分关系影响的差异。结果表明 ,土壤干旱情况下 ,氮磷营养虽然皆增强了春小麦的渗透调节能力 ,但由于氮磷营养对作物地上地下部生长的不同进促作用而对作物的水分状况产生了完全相反的影响。氮营养增强了作物对干旱的敏感性 ,使其水势和相对含水量大幅度下降 ,蒸腾失水减少 ,自由水含量增加而束缚水含量减少 ,并使膜稳定性降低 ;而磷营养则明显改善了植株的水分状况 ,增大了气孔导度 ,降低了其对干旱的敏感性 ,增加了束缚水含量 ,并使膜稳定性增强
Resumo:
在黄土旱塬长期定位研究表明 ,根据小麦生育年降水量施用氮肥 ,将能更好地发挥肥料效益。丰水年、平水年氮肥增产效果极为显著 ,应加大施用量 ;干旱年氮肥效果受抑 ,应减少施用量。氮肥利用率受降水等因素影响 ,年际间变化幅度为 6.4%~ 58.6%。氮肥利用率亦随施用量的增加而降低 ,变化幅度为 2 5.4%~ 42 .9%,且其利用率与施肥利润的高低并不同步。施用有机肥或氮磷有机肥配施、轮作中增加豆科作物 (或牧草 )能有效地调节改善土壤氮素状况
Resumo:
根据近年有关文献资料 ,从叶水势、渗透调节、光合作用、干旱诱导蛋白、激素调节、膜抗氧化酶等方面 ,对小麦抗旱性研究在生理生化方面所取得的进展作一综述。目前认为 ,作物抗旱性研究的前沿是从分子水平阐明作物由干旱胁迫引起生理生化变化的本质原因 ,并通过基因工程的手段进行抗旱基因的重组 ,从而创造新的抗旱品种 ,将是一个前景诱人的目标。
Resumo:
National Natural Science Foundation of China (NSFC) [30670384, 30590381]
Resumo:
Chinese Academy of Sciences [KZCX2-YW-315-2]; National Natural Science Foundation of China [40701021, 40625002]; National Key Technology R&D Program of China [2007BAC03A01]
Resumo:
Sustainable water use is seriously compromised in the North China Plain (NCP) due to the huge water requirements of agriculture, the largest use of water resources. An integrated approach which combines the ecosystem model with emergy analysis is presented to determine the optimum quantity of irrigation for sustainable development in irrigated cropping systems. Since the traditional emergy method pays little attention to the dynamic interaction among components of the ecological system and dynamic emergy accounting is in its infancy, it is hard to evaluate the cropping system in hypothetical situations or in response to specific changes. In order to solve this problem, an ecosystem model (Vegetation Interface Processes (VIP) model) is introduced for emergy analysis to describe the production processes. Some raw data, collected by investigating or observing in conventional emergy analysis, may be calculated by the VIP model in the new approach. To demonstrate the advantage of this new approach, we use it to assess the wheat-maize rotation cropping system at different irrigation levels and derive the optimum quantity of irrigation according to the index of ecosystem sustainable development in NCP. The results show, the optimum quantity of irrigation in this region should be 240-330 mm per year in the wheat system and no irrigation in the maize system, because with this quantity of irrigation the rotation crop system reveals: best efficiency in energy transformation (transformity = 6.05E + 4 sej/J); highest sustainability (renewability = 25%); lowest environmental impact (environmental loading ratio = 3.5) and the greatest sustainability index (Emergy Sustainability Index = 0.47) compared with the system in other irrigation amounts. This study demonstrates that application of the new approach is broader than the conventional emergy analysis and the new approach is helpful in optimizing resources allocation, resource-savings and maintaining agricultural sustainability.
Resumo:
The biological soil crusts (BSCs) in the Gurbantunggut Desert, the largest fixed and semi-fixed desert in China, feature moss-dominated BSCs, which play an indispensable role in sand fixation. Syntrichia caninervis Mitt. (S. caninervis) serves as one of the most common species in BSCs in the desert. In this study we examined the morphological structure of S. caninervis from leafy gametophyte to protonema using light and scanning electron microscopy (SEM). We also examined the relationships between the morphological structure of S. caninervis and environmental factors. We found that: (1) this moss species is commonly tufted on the sand surface, and its leaves are folded upwards and twisted around the stem under dry conditions; (2) the cells on both upper and lower leaf surfaces have C-shaped dark papillae, which may reflect sunlight to reduce the damage from high temperature; (3) the leaf costa is excurrent, forming an awn with forked teeth; and (4) the protonema cells are small and thickset with thick cell walls and the cytoplasm is highly concentrated with a small vacuole. In addition, we also found that the protonema cells always form pouches on the tip of the mother cells during the process of cell polarization. Our results suggest that S. caninervis has, through its life cycle, several morphological and structural characteristics to adapt to dry environmental conditions. These morphological features of S. caninervis may also be found in other deserts in the world due to the world-wide distribution of the species.
Resumo:
Radiation-use efficiency (RUE, g/MJ) and the harvest index (HI, unitless) are two helpful characteristics in interpreting crop response to environmental and climatic changes. They are also increasingly important for accurate crop yield simulation, but they are affected by various environmental factors. In this study, the RUE and HI of winter wheat and their relationships to canopy spectral reflectance were investigated based on the massive field measurements of five nitrogen (N) treatments. Crop production can be separated into light interception and RUE. The results indicated that during a long period of slow growth from emergence to regreening, the effect of N on crop production mainly showed up in an increased light interception by the canopy. During the period of rapid growth from regreening to maturity, it was present in both light interception and RUE. The temporal variations of RUEAPAR (aboveground biomass produced per unit of photosynthetically active radiation absorbed by the canopy) during the period from regreening to maturity had different patterns corresponding to the N deficiency, N adequacy and N-excess conditions. Moreover, significant relationships were found between the RUEAPAR and the accumulative normalised difference vegetation index (NDVI) in the integrated season (R-2 = 0.68), between the HI and the accumulative NDVI after anthesis (R-2 = 0.89), and between the RUEgrain (ratio of grain yield to the total amount of photosynthetically active radiation absorbed by the canopy) and the accumulative NDVI of the whole season (R-2 = 0.89) and that after anthesis (R-2 = 0.94). It suggested that canopy spectral reflectance has the potential to reveal the spatial information of the RUEAPAR, HI and RUEgrain. It is hoped that this information will be useful in improving the accuracy of crop yield simulation in large areas.
Resumo:
For maximizing the effective applications of remote sensing in crop recognition, crop performance assessment and canopy variables estimation at large areas, it is essential to fully understand the spectral response of canopy to crop development and varying growing conditions. In this paper, the spectral properties of winter wheat canopy under different growth stages and different agronomic conditions were investigated at the field level based on reflectance measurements. It was proved that crop growth and development, nitrogen fertilization rates, nutrient deficit (e.g. lacking any kind of nitrogen, phosphorus and kalium fertilizer or lacking all of them), irrigation frequency and plant density had direct influence on canopy reflectance in 400-900 nm which including the visible/near infrared bands, and resulted in great changes of spectral curves. It was suggested that spectral reflectance of crop canopy can well reflect the growth and development of crop and the impacts from various factors, and was feasible to provide vital information for crop monitoring and assessment. ©2010 IEEE.
Resumo:
Watermarking aims to hide particular information into some carrier but does not change the visual cognition of the carrier itself. Local features are good candidates to address the watermark synchronization error caused by geometric distortions and have attracted great attention for content-based image watermarking. This paper presents a novel feature point-based image watermarking scheme against geometric distortions. Scale invariant feature transform (SIFT) is first adopted to extract feature points and to generate a disk for each feature point that is invariant to translation and scaling. For each disk, orientation alignment is then performed to achieve rotation invariance. Finally, watermark is embedded in middle-frequency discrete Fourier transform (DFT) coefficients of each disk to improve the robustness against common image processing operations. Extensive experimental results and comparisons with some representative image watermarking methods confirm the excellent performance of the proposed method in robustness against various geometric distortions as well as common image processing operations.