977 resultados para Dried flower arrangement
Resumo:
Mode of access: Internet.
Resumo:
No more published.
Resumo:
Mode of access: Internet.
Resumo:
Paged continuously: v. 1; 4 pl., xvi, 352 p.; v. 2: 1 p. l., [353]-704 p.
Resumo:
"Fifth edition."
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Exposure to ethylene gas elicits flower abscission from cut stems of Geraldton waxflower (Chamelaucium uncinatum Schauer). Ethylene response rates in plants are mediated by temperature. At 20degreesC, flower abscission from waxflower 'Purple Pride' occurred upon 12 h exposure to I mu11(-1) ethylene. This ethylene treatment did not cause flower abscission at either 10 or 2degreesC. Moreover, flowers held at 2degreesC were insensitive to 48 h exposure to 1, 10 and 100 mu11(-1) ethylene. However, increasing the duration of treatment with I mu11(-1) ethylene at 10 and 2degreesC to 48 and 144 h, respectively, induced flower abscission. When flowers were held at 20degreesC in air without exogenous ethylene following continuous exposure to I mu11(-1) ethylene at 2degreesC, the duration required to elicit flower abscission was reduced from 144 to 72 It. Collectively, these responses show that maintaining harvested waxflower at low temperature (e.g. 2degreesC) is an effective means to minimise ethylene-mediated flower abscission.
Resumo:
Floral volatiles play a major role in plant-insect communication. We examined the influence of two volatiles, phenylacetaldehyde and a-pinene, on the innate and learnt foraging behaviour of the moth Helicoverpa armigera. In dual-choice wind tunnel tests, adult moths flew upwind towards both volatiles, with a preference for phenylacetaldehyde. When exposure to either of these volatiles was paired with a feeding stimulus (sucrose), all moths preferred the learnt odour in the preference test. This change in preference was not seen when moths were exposed to the odour without a feeding stimulus. The learnt preference for the odour was reduced when moths were left unfed for 24 h before the preference test. We tested whether moths could discriminate between flowers that differed in a single volatile component. Moths were trained to feed on flowers that were odour-enhanced using either phenylacetaldehyde or a-pinene. Choice tests were then carried out in an outdoor flight cage, using flowers enhanced with either volatile. Moths showed a significant preference for the flower type on which they were trained. Moths that were conditioned on flowers that were not odour-enhanced showed no preference for either of the odour-enhanced flower types. The results imply that moths may be discriminating among odour profiles of individual flowers from the same species. We discuss this behaviour within the context of nectar foraging in moths and odour signalling by flowering plants.
Resumo:
There are two major groups of ticks: soft ticks and hard ticks. The hard ticks comprise the prostriate ticks and the metastriate ticks. The mitochondrial (mt) genomes of one species of prostriate tick and two species of metastriate ticks had been sequenced prior to our study. The prostriate tick has the ancestral arrangement of mt genes of arthropods, whereas the two metastriate ticks have rearrangements of eight genes and duplicate control regions. However, the arrangement of genes in the mt genomes of soft ticks had not been studied. We sequenced the mt genomes of two species of soft ticks, Carios capensis and Ornithodoros moubata, and a metastriate tick, Haemaphysalis flava. We found that the soft ticks have the ancestral arrangement of mt genes of arthropods, whereas the metastriate tick, H. flava, shares the rearrangements of mt genes and duplicate control regions with the other two metastriate ticks that have previously been studied. Our study indicates that gene rearrangements and duplicate control regions in mt genomes occurred once in the most recent common ancestor of metastriate ticks, whereas the ancestral arrangement of arthropods has remained unchanged for over 400 million years in the lineages leading to the soft ticks and the prostriate ticks.
Resumo:
To characterise the physiology of development and senescence for Grevillea 'Sylvia'. oral organs, respiration, ethylene production and ACC concentrations in harvested flowers and flower parts were measured. The respiration rate of harvested inflorescences decreased over time during senescence. In contrast, both ethylene production and ACC concentration increased. Individual flowers, either detached from cut inflorescences held in vases at 20degreesC or detached from in planta inflorescences at various stages of development, had similar patterns of change in ACC concentration and rates of respiration and ethylene production as whole inflorescences. The correlation between ACC concentration and ethylene production by individual flowers detached from cut inflorescences held in vases was poor (r(2)=0.03). The isolated complete gynoecium (inclusive of the pedicel) produced increasing amounts of ethylene during development. Further sub-division of flower parts and measurement of their ethylene production at various stages of development revealed that the distal part of the gynoecium (inclusive of the stigma) had the highest rate of ethylene production. In turn, anthers had higher rates of ethylene production and also higher ACC concentrations than the proximal part of the gynoecium (inclusive of the ovary). Rates of ethylene production and ACC concentrations for tepal abscission zone tissue and adjacent central tepal zone tissue were similar. ACC concentration in pollen was similar to that in senescing perianth tissue. Overall, respiration, ethylene and ACC content measurements suggest that senescence of G. 'Sylvia' is non-climacteric in character. Nonetheless, the phytohormone ethylene is produced and evidently mediates normal flower development and non-climacteric senescence processes.
Resumo:
The observation that snakes and spiders are found faster among flowers and mushrooms than vice versa and that this search advantage is independent of set size supports the notion that fear-relevant stimuli are processed preferentially in a dedicated fear module. Experiment I replicated the faster identification of snakes and spiders but also found a set size effect in a blocked, but not in a mixed-trial, sequence. Experiment 2 failed to find faster identification of snake and spider deviants relative to other animals among flowers and mushrooms and provided evidence for a search advantage for pictures of animals, irrespective of their fear relevance. These findings suggest that results from the present visual search task cannot support the notion of preferential processing of fear relevance.
Resumo:
To better understand the evolution of mitochondrial (mt) genomes in the Acari (mites and ticks), we sequenced the mt genome of the chigger mite, Leptotrombidium pallidum (Arthropoda: Acari: Acariformes). This genome is highly rearranged relative to that of the hypothetical ancestor of the arthropods and the other species of Acari studied. The mt genome of L. pallidum has two genes for large subunit rRNA, a pseudogene for small subunit rRNA, and four nearly identical large noncoding regions. Nineteen of the 22 tRNAs encoded by this genome apparently lack either a T-arm or a D-arm. Further, the mt genome of L. pallidum has two distantly separated sections with identical sequences but opposite orientations of transcription. This arrangement cannot be accounted for by homologous recombination or by previously known mechanisms of mt gene rearrangement. The most plausible explanation for the origin of this arrangement is illegitimate inter-mtDNA recombination, which has not been reported previously in animals. In light of the evidence from previous experiments on recombination in nuclear and mt genomes of animals, we propose a model of illegitimate inter-mtDNA recombination to account for the novel gene content and gene arrangement in the mt genome of L. pallidum.
Resumo:
Stickiness is a common problem encountered in food handling and processing, and also during consumption. Stickiness is observed as adhesion of the food to processing equipment surfaces or cohesion within the food particulate or mass. An important operation where this undesirable behavior of food is manifested is drying. This occurs particularly during drying of high-sugar and high-fat foods. To date, the stickiness of foods during drying or dried powder has been investigated in relation to their viscous and glass transition properties. The importance of contact surface energy of the equipment has been ignored in many analyses, despite the fact that some drying operations have reported using low-energy contact surfaces in drying equipment to avoid the problems caused by stickiness. This review discusses the fundamentals of adhesion and cohesion mechanisms and relates these phenomena to drying and dried products.