909 resultados para Discrete-time Dynamics


Relevância:

30.00% 30.00%

Publicador:

Resumo:

To describe the collective behavior of large ensembles of neurons in neuronal network, a kinetic theory description was developed in [13, 12], where a macroscopic representation of the network dynamics was directly derived from the microscopic dynamics of individual neurons, which are modeled by conductance-based, linear, integrate-and-fire point neurons. A diffusion approximation then led to a nonlinear Fokker-Planck equation for the probability density function of neuronal membrane potentials and synaptic conductances. In this work, we propose a deterministic numerical scheme for a Fokker-Planck model of an excitatory-only network. Our numerical solver allows us to obtain the time evolution of probability distribution functions, and thus, the evolution of all possible macroscopic quantities that are given by suitable moments of the probability density function. We show that this deterministic scheme is capable of capturing the bistability of stationary states observed in Monte Carlo simulations. Moreover, the transient behavior of the firing rates computed from the Fokker-Planck equation is analyzed in this bistable situation, where a bifurcation scenario, of asynchronous convergence towards stationary states, periodic synchronous solutions or damped oscillatory convergence towards stationary states, can be uncovered by increasing the strength of the excitatory coupling. Finally, the computation of moments of the probability distribution allows us to validate the applicability of a moment closure assumption used in [13] to further simplify the kinetic theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interaural intensity and time differences (IID and ITD) are two binaural auditory cues for localizing sounds in space. This study investigated the spatio-temporal brain mechanisms for processing and integrating IID and ITD cues in humans. Auditory-evoked potentials were recorded, while subjects passively listened to noise bursts lateralized with IID, ITD or both cues simultaneously, as well as a more frequent centrally presented noise. In a separate psychophysical experiment, subjects actively discriminated lateralized from centrally presented stimuli. IID and ITD cues elicited different electric field topographies starting at approximately 75 ms post-stimulus onset, indicative of the engagement of distinct cortical networks. By contrast, no performance differences were observed between IID and ITD cues during the psychophysical experiment. Subjects did, however, respond significantly faster and more accurately when both cues were presented simultaneously. This performance facilitation exceeded predictions from probability summation, suggestive of interactions in neural processing of IID and ITD cues. Supra-additive neural response interactions as well as topographic modulations were indeed observed approximately 200 ms post-stimulus for the comparison of responses to the simultaneous presentation of both cues with the mean of those to separate IID and ITD cues. Source estimations revealed differential processing of IID and ITD cues initially within superior temporal cortices and also at later stages within temporo-parietal and inferior frontal cortices. Differences were principally in terms of hemispheric lateralization. The collective psychophysical and electrophysiological results support the hypothesis that IID and ITD cues are processed by distinct, but interacting, cortical networks that can in turn facilitate auditory localization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While the dynamics of lexical-semantic and lexical-phonological encoding in word production have been investigated in several event-related potential (ERP) studies, the estimated time course of phonological-phonetic encoding is the result of rather indirect evidence. We investigated the dynamics of phonological-phonetic encoding combining ERP analyses covering the entire encoding process in picture naming and word reading tasks by comparing ERP modulations in eight brain-damaged speakers presenting impaired phonological-phonetic encoding relative to 16 healthy controls. ERPs diverged between groups in terms of local waveform amplitude and global topography at ∼400ms after stimulus onset in the picture naming task and at ∼320-350ms in word reading and sustained until 100ms before articulation onset. These divergences appeared in later time windows than those found in patients with underlying lexical-semantic and lexical-phonological impairment in previous studies, providing evidence that phonological-phonetic encoding is engaged around 400ms in picture naming and around 330ms in word reading.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: In vitro aggregating brain cell cultures containing all types of brain cells have been shown to be useful for neurotoxicological investigations. The cultures are used for the detection of nervous system-specific effects of compounds by measuring multiple endpoints, including changes in enzyme activities. Concentration-dependent neurotoxicity is determined at several time points. METHODS: A Markov model was set up to describe the dynamics of brain cell populations exposed to potentially neurotoxic compounds. Brain cells were assumed to be either in a healthy or stressed state, with only stressed cells being susceptible to cell death. Cells may have switched between these states or died with concentration-dependent transition rates. Since cell numbers were not directly measurable, intracellular lactate dehydrogenase (LDH) activity was used as a surrogate. Assuming that changes in cell numbers are proportional to changes in intracellular LDH activity, stochastic enzyme activity models were derived. Maximum likelihood and least squares regression techniques were applied for estimation of the transition rates. Likelihood ratio tests were performed to test hypotheses about the transition rates. Simulation studies were used to investigate the performance of the transition rate estimators and to analyze the error rates of the likelihood ratio tests. The stochastic time-concentration activity model was applied to intracellular LDH activity measurements after 7 and 14 days of continuous exposure to propofol. The model describes transitions from healthy to stressed cells and from stressed cells to death. RESULTS: The model predicted that propofol would affect stressed cells more than healthy cells. Increasing propofol concentration from 10 to 100 μM reduced the mean waiting time for transition to the stressed state by 50%, from 14 to 7 days, whereas the mean duration to cellular death reduced more dramatically from 2.7 days to 6.5 hours. CONCLUSION: The proposed stochastic modeling approach can be used to discriminate between different biological hypotheses regarding the effect of a compound on the transition rates. The effects of different compounds on the transition rate estimates can be quantitatively compared. Data can be extrapolated at late measurement time points to investigate whether costs and time-consuming long-term experiments could possibly be eliminated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genetic polymorphism can be maintained over time by negative frequency-dependent (FD) selection induced by Rock-paper-scissors (RPS) social systems. RPS games produce cyclic dynamics, and have been suggested to exist in lizards, insects, isopods, plants, and bacteria. Sexual selection is predicted to accentuate the survival of the future progeny during negative FD survival selection. More specifically, females are predicted to select mates that produce progeny genotypes that exhibit highest survival during survival selection imposed by adult males. However, no empirical evidence demonstrates the existence of FD sexual selection with respect to fitness payoffs of genetic polymorphisms. Here we tested this prediction using the common lizard Zootoca vivipara, a species with three male color morphs (orange, white, yellow) that exhibit morph frequency cycles. In a first step we tested the congruence of the morph frequency change with the predicted change in three independent populations, differing in male color morph frequency and state of the FD morph cycle. Thereafter we ran standardized sexual selection assays in which we excluded alternative mechanisms that potentially induce negative FD selection, and we quantified inter-sexual behavior. The patterns of sexual selection and the observed behavior were in line with context-dependent female mate choice and male behavior played a minor role. Moreover, the strength of the sexual selection was within the magnitude of selection required to produce the observed 3-4-year and 6-8 year morph frequency cycles at low and high altitudes, respectively. In summary, the study provides the first experimental evidence that underpins the crucial assumption of the RPS games suggested to exist in lizards, insects, isopods, and plants; namely, that sexual selection produces negative-FD selection. This indicates that sexual selection, in our study exert by females, might be a crucial driver of the maintenance of genetic polymorphisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new metabolite profiling approach combined with an ultrarapid sample preparation procedure was used to study the temporal and spatial dynamics of the wound-induced accumulation of jasmonic acid (JA) and its oxygenated derivatives in Arabidopsis thaliana. In addition to well known jasmonates, including hydroxyjasmonates (HOJAs), jasmonoyl-isoleucine (JA-Ile), and its 12-hydroxy derivative (12-HOJA-Ile), a new wound-induced dicarboxyjasmonate, 12-carboxyjasmonoyl-l-isoleucine (12-HOOCJA-Ile) was discovered. HOJAs and 12-HOOCJA-Ile were enriched in the midveins of wounded leaves, strongly differentiating them from the other jasmonate metabolites studied. The polarity of these oxylipins at physiological pH correlated with their appearance in midveins. When the time points of accumulation of different jasmonates were determined, JA levels were found to increase within 2-5 min of wounding. Remarkably, these changes occurred throughout the plant and were not restricted to wounded leaves. The speed of the stimulus leading to JA accumulation in leaves distal to a wound is at least 3 cm/min. The data give new insights into the spatial and temporal accumulation of jasmonates and have implications in the understanding of long-distance wound signaling in plants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biological parameters of Triatoma brasiliensis and T. pseudomaculata that could influence the epidemiological importance of these insects as vectors of Trypanosoma cruzi were compared. The parameters studied were incubation period, interval between hatching or moulting and first feeding, number of blood meals, development time, mortality, net reproductive rate, instantaneous daily reproductive rate, time-lapse before starting feeding, duration of feeding, blood ingestion capacity, occurrence of defecation and blood ingestion velocity. Most aspects of feeding were similar for the two species, although T. pseudomaculata had a longer life cycle than T. brasiliensis producing one and two generations per year, respectively. The two species had similar instantaneous daily rates of population growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SOUND OBJECTS IN TIME, SPACE AND ACTIONThe term "sound object" describes an auditory experience that is associated with an acoustic event produced by a sound source. At cortical level, sound objects are represented by temporo-spatial activity patterns within distributed neural networks. This investigation concerns temporal, spatial and action aspects as assessed in normal subjects using electrical imaging or measurement of motor activity induced by transcranial magnetic stimulation (TMS).Hearing the same sound again has been shown to facilitate behavioral responses (repetition priming) and to modulate neural activity (repetition suppression). In natural settings the same source is often heard again and again, with variations in spectro-temporal and spatial characteristics. I have investigated how such repeats influence response times in a living vs. non-living categorization task and the associated spatio-temporal patterns of brain activity in humans. Dynamic analysis of distributed source estimations revealed differential sound object representations within the auditory cortex as a function of the temporal history of exposure to these objects. Often heard sounds are coded by a modulation in a bilateral network. Recently heard sounds, independently of the number of previous exposures, are coded by a modulation of a left-sided network.With sound objects which carry spatial information, I have investigated how spatial aspects of the repeats influence neural representations. Dynamics analyses of distributed source estimations revealed an ultra rapid discrimination of sound objects which are characterized by spatial cues. This discrimination involved two temporo-spatially distinct cortical representations, one associated with position-independent and the other with position-linked representations within the auditory ventral/what stream.Action-related sounds were shown to increase the excitability of motoneurons within the primary motor cortex, possibly via an input from the mirror neuron system. The role of motor representations remains unclear. I have investigated repetition priming-induced plasticity of the motor representations of action sounds with the measurement of motor activity induced by TMS pulses applied on the hand motor cortex. TMS delivered to the hand area within the primary motor cortex yielded larger magnetic evoked potentials (MEPs) while the subject was listening to sounds associated with manual than non- manual actions. Repetition suppression was observed at motoneuron level, since during a repeated exposure to the same manual action sound the MEPs were smaller. I discuss these results in terms of specialized neural network involved in sound processing, which is characterized by repetition-induced plasticity.Thus, neural networks which underlie sound object representations are characterized by modulations which keep track of the temporal and spatial history of the sound and, in case of action related sounds, also of the way in which the sound is produced.LES OBJETS SONORES AU TRAVERS DU TEMPS, DE L'ESPACE ET DES ACTIONSLe terme "objet sonore" décrit une expérience auditive associée avec un événement acoustique produit par une source sonore. Au niveau cortical, les objets sonores sont représentés par des patterns d'activités dans des réseaux neuronaux distribués. Ce travail traite les aspects temporels, spatiaux et liés aux actions, évalués à l'aide de l'imagerie électrique ou par des mesures de l'activité motrice induite par stimulation magnétique trans-crânienne (SMT) chez des sujets sains. Entendre le même son de façon répétitive facilite la réponse comportementale (amorçage de répétition) et module l'activité neuronale (suppression liée à la répétition). Dans un cadre naturel, la même source est souvent entendue plusieurs fois, avec des variations spectro-temporelles et de ses caractéristiques spatiales. J'ai étudié la façon dont ces répétitions influencent le temps de réponse lors d'une tâche de catégorisation vivant vs. non-vivant, et les patterns d'activité cérébrale qui lui sont associés. Des analyses dynamiques d'estimations de sources ont révélé des représentations différenciées des objets sonores au niveau du cortex auditif en fonction de l'historique d'exposition à ces objets. Les sons souvent entendus sont codés par des modulations d'un réseau bilatéral. Les sons récemment entendus sont codé par des modulations d'un réseau du côté gauche, indépendamment du nombre d'expositions. Avec des objets sonores véhiculant de l'information spatiale, j'ai étudié la façon dont les aspects spatiaux des sons répétés influencent les représentations neuronales. Des analyses dynamiques d'estimations de sources ont révélé une discrimination ultra rapide des objets sonores caractérisés par des indices spatiaux. Cette discrimination implique deux représentations corticales temporellement et spatialement distinctes, l'une associée à des représentations indépendantes de la position et l'autre à des représentations liées à la position. Ces représentations sont localisées dans la voie auditive ventrale du "quoi".Des sons d'actions augmentent l'excitabilité des motoneurones dans le cortex moteur primaire, possiblement par une afférence du system des neurones miroir. Le rôle des représentations motrices des sons d'actions reste peu clair. J'ai étudié la plasticité des représentations motrices induites par l'amorçage de répétition à l'aide de mesures de potentiels moteurs évoqués (PMEs) induits par des pulsations de SMT sur le cortex moteur de la main. La SMT appliquée sur le cortex moteur primaire de la main produit de plus grands PMEs alors que les sujets écoutent des sons associée à des actions manuelles en comparaison avec des sons d'actions non manuelles. Une suppression liée à la répétition a été observée au niveau des motoneurones, étant donné que lors de l'exposition répétée au son de la même action manuelle les PMEs étaient plus petits. Ces résultats sont discuté en termes de réseaux neuronaux spécialisés impliqués dans le traitement des sons et caractérisés par de la plasticité induite par la répétition. Ainsi, les réseaux neuronaux qui sous-tendent les représentations des objets sonores sont caractérisés par des modulations qui gardent une trace de l'histoire temporelle et spatiale du son ainsi que de la manière dont le son a été produit, en cas de sons d'actions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Résumé grand public :Le cerveau se compose de cellules nerveuses appelées neurones et de cellules gliales dont font partie les astrocytes. Les neurones communiquent entre eux par signaux électriques et en libérant des molécules de signalisation comme le glutamate. Les astrocytes ont eux pour charge de capter le glucose depuis le sang circulant dans les vaisseaux sanguins, de le transformer et de le transmettre aux neurones pour qu'ils puissent l'utiliser comme source d'énergie. L'astrocyte peut ensuite utiliser ce glucose de deux façons différentes pour produire de l'énergie : la première s'opère dans des structures appelées mitochondries qui sont capables de produire plus de trente molécules riches en énergie (ATP) à partir d'une seule molécule de glucose ; la seconde possibilité appelée glycolyse peut produire deux molécules d'ATP et un dérivé du glucose appelé lactate. Une théorie couramment débattue propose que lorsque les astrocytes capturent le glutamate libéré par les neurones, ils libèrent en réponse du lactate qui servirait de base énergétique aux neurones. Cependant, ce mécanisme n'envisage pas une augmentation de l'activité des mitochondries des astrocytes, ce qui serait pourtant bien plus efficace pour produire de l'énergie.En utilisant la microscopie par fluorescence, nous avons pu mesurer les changements de concentrations ioniques dans les mitochondries d'astrocytes soumis à une stimulation glutamatergique. Nous avons démontré que les mitochondries des astrocytes manifestent des augmentations spontanées et transitoires de leur concentrations ioniques, dont la fréquence était diminuée au cours d'une stimulation avec du glutamate. Nous avons ensuite montré que la capture de glutamate augmentait la concentration en sodium et acidifiait les mitochondries des astrocytes. En approfondissant ces mécanismes, plusieurs éléments ont suggéré que l'acidification induite diminuerait le potentiel de synthèse d'énergie d'origine mitochondriale et la consommation d'oxygène dans les astrocytes. En résumé, l'ensemble de ces travaux suggère que la signalisation neuronale impliquant le glutamate dicte aux astrocytes de sacrifier temporairement l'efficacité de leur métabolisme énergétique, en diminuant l'activité de leurs mitochondries, afin d'augmenter la disponibilité des ressources énergétiques utiles aux neurones.Résumé :La remarquable efficacité du cerveau à compiler et propager des informations coûte au corps humain 20% de son budget énergétique total. Par conséquent, les mécanismes cellulaires responsables du métabolisme énergétique cérébral se sont adéquatement développés pour répondre aux besoins énergétiques du cerveau. Les dernières découvertes en neuroénergétique tendent à démontrer que le site principal de consommation d'énergie dans le cerveau est situé dans les processus astrocytaires qui entourent les synapses excitatrices. Un nombre croissant de preuves scientifiques a maintenant montré que le transport astrocytaire de glutamate est responsable d'un coût métabolique important qui est majoritairement pris en charge par une augmentation de l'activité glycolytique. Cependant, les astrocytes possèdent également un important métabolisme énergétique de type mitochondrial. Par conséquent, la localisation spatiale des mitochondries à proximité des transporteurs de glutamate suggère l'existence d'un mécanisme régulant le métabolisme énergétique astrocytaire, en particulier le métabolisme mitochondrial.Afin de fournir une explication à ce paradoxe énergétique, nous avons utilisé des techniques d'imagerie par fluorescence pour mesurer les modifications de concentrations ioniques spontanées et évoquées par une stimulation glutamatergique dans des astrocytes corticaux de souris. Nous avons montré que les mitochondries d'astrocytes au repos manifestaient des changements individuels, spontanés et sélectifs de leur potentiel électrique, de leur pH et de leur concentration en sodium. Nous avons trouvé que le glutamate diminuait la fréquence des augmentations spontanées de sodium en diminuant le niveau cellulaire d'ATP. Nous avons ensuite étudié la possibilité d'une régulation du métabolisme mitochondrial astrocytaire par le glutamate. Nous avons montré que le glutamate initie dans la population mitochondriale une augmentation rapide de la concentration en sodium due à l'augmentation cytosolique de sodium. Nous avons également montré que le relâchement neuronal de glutamate induit une acidification mitochondriale dans les astrocytes. Nos résultats ont indiqué que l'acidification induite par le glutamate induit une diminution de la production de radicaux libres et de la consommation d'oxygène par les astrocytes. Ces études ont montré que les mitochondries des astrocytes sont régulées individuellement et adaptent leur activité selon l'environnement intracellulaire. L'adaptation dynamique du métabolisme énergétique mitochondrial opéré par le glutamate permet d'augmenter la quantité d'oxygène disponible et amène au relâchement de lactate, tous deux bénéfiques pour les neurones.Abstract :The remarkable efficiency of the brain to compute and communicate information costs the body 20% of its total energy budget. Therefore, the cellular mechanisms responsible for brain energy metabolism developed adequately to face the energy needs. Recent advances in neuroenergetics tend to indicate that the main site of energy consumption in the brain is the astroglial process ensheating activated excitatory synapses. A large body of evidence has now shown that glutamate uptake by astrocytes surrounding synapses is responsible for a significant metabolic cost, whose metabolic response is apparently mainly glycolytic. However, astrocytes have also a significant mitochondrial oxidative metabolism. Therefore, the location of mitochondria close to glutamate transporters raises the question of the existence of mechanisms for tuning their energy metabolism, in particular their mitochondrial metabolism.To tackle these issues, we used real time imaging techniques to study mitochondrial ionic alterations occurring at resting state and during glutamatergic stimulation of mouse cortical astrocytes. We showed that mitochondria of intact resting astrocytes exhibited individual spontaneous and selective alterations of their electrical potential, pH and Na+ concentration. We found that glutamate decreased the frequency of mitochondrial Na+ transient activity by decreasing the cellular level of ATP. We then investigated a possible link between glutamatergic transmission and mitochondrial metabolism in astrocytes. We showed that glutamate triggered a rapid Na+ concentration increase in the mitochondrial population as a result of plasma-membrane Na+-dependent uptake. We then demonstrated that neuronally released glutamate also induced a mitochondrial acidification in astrocytes. Glutamate induced a pH-mediated and cytoprotective decrease of mitochondrial metabolism that diminished oxygen consumption. Taken together, these studies showed that astrocytes contain mitochondria that are individually regulated and sense the intracellular environment to modulate their own activity. The dynamic regulation of astrocyte mitochondrial energy output operated by glutamate allows increasing oxygen availability and lactate production both being beneficial for neurons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The resistance to starvation of Triatoma vitticeps has been analyzed comparatively, according to different regimens of food deprivation under laboratory conditions. One cohort, composed of 100 specimens of each evolutionary nymphal stage, was submitted to continuous fasting until death; the second group, arranged in the same way, was fed once on chicken. Through this work, it was possible not only to compare the results obtained from the first group with other authors' results but, also, to analyze the dynamics of evolution, molting, longevity and the increase in insect longevity, in the second group. The average values recorded for survival time revealed statistical differences between the two groups. Among the important results detected, there is one that deserves to be emphasized: the incredible increase in longevity among insects that received only one feed - an average increase in survival time that reached 2.95 to 3.30 times in nymphs of 3rd and 4th stages, respectively. One 5th stage nymph survived for up to 350 days and the females may triplicate their survival rate, what represents an important epidemiological factor. The knowledge about this type of biological characteristic of T. vitticeps may contribute to prevent the domiciliation of this species, what seems to be incipient in some municipal districts, in Brazil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Altitudinal tree lines are mainly constrained by temperature, but can also be influenced by factors such as human activity, particularly in the European Alps, where centuries of agricultural use have affected the tree-line. Over the last decades this trend has been reversed due to changing agricultural practices and land-abandonment. We aimed to combine a statistical land-abandonment model with a forest dynamics model, to take into account the combined effects of climate and human land-use on the Alpine tree-line in Switzerland. Land-abandonment probability was expressed by a logistic regression function of degree-day sum, distance from forest edge, soil stoniness, slope, proportion of employees in the secondary and tertiary sectors, proportion of commuters and proportion of full-time farms. This was implemented in the TreeMig spatio-temporal forest model. Distance from forest edge and degree-day sum vary through feed-back from the dynamics part of TreeMig and climate change scenarios, while the other variables remain constant for each grid cell over time. The new model, TreeMig-LAb, was tested on theoretical landscapes, where the variables in the land-abandonment model were varied one by one. This confirmed the strong influence of distance from forest and slope on the abandonment probability. Degree-day sum has a more complex role, with opposite influences on land-abandonment and forest growth. TreeMig-LAb was also applied to a case study area in the Upper Engadine (Swiss Alps), along with a model where abandonment probability was a constant. Two scenarios were used: natural succession only (100% probability) and a probability of abandonment based on past transition proportions in that area (2.1% per decade). The former showed new forest growing in all but the highest-altitude locations. The latter was more realistic as to numbers of newly forested cells, but their location was random and the resulting landscape heterogeneous. Using the logistic regression model gave results consistent with observed patterns of land-abandonment: existing forests expanded and gaps closed, leading to an increasingly homogeneous landscape.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The variation of abundances of intermediate snail hosts of Fasciola hepatica in Cuba (Fossaria cubensis and Pseudosuccinea columella) was studied during one year under natural conditions at five sampling sites in San Juan y Martinez municipality, Pinar del Rio province, Cuba. The effect of some environmental variables on the lymnaeid abundances was also studied. A canonical correspondence analysis showed that both species do not generally occur together in the same habitat and that most factors affect them in an opposite fashion, although both of them correlate positively through time to the diversity of the habitats. F. cubensis prefers the sites that are in or closer to the city whereas P. columella is more abundant in rural sites. Lymnaeid abundances are mainly affected by nitrite and nitrate concentrations as well as by the abundance of the thiarid Tarebia granifera. F. cubensis is more abundant in polluted habitats with low densities (or absence) of T. granifera whereas P. columella prefers cleaner habitats and can coexist with the thiarid, even at its higher densities. The implications of divergent preferences of the two lymnaeids for the control of fasciolosis are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adults of Triatoma vitticeps infected by flagellates similar to Trypanosoma cruzi are frequently captured by the inhabitants of rural areas in the Brazilian state of Espírito Santo. The dynamics of feeding and defecation were observed in three groups of adult triatomines, consisting of sylvatic T. vitticeps and laboratory-reared specimens of this species and T. infestans. Triatomines were observed from the moment they were presented with an immobilized chicken as a bloodmeal source until 240 min after feeding had ended. Mean times between the end of feeding and defecation for T. infestans, wild T. vitticeps and laboratory-reared specimens of the latter species were 1.2, 21.1, and 64 min respectively. All T. infestans defecated within 10 min of feeding, while only 29.9 of wild and 52.8% laboratory-reared specimens of T. vitticeps did so within this period. These results may explain the low efficiency of T. vitticeps in T. cruzi transmission to man. The shorter time between feeding and defecation in laboratory-reared T. vitticeps may indicate a change in behaviour of this species as a result of adaptation to an artificial environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protection from reactivation of persistent herpes virus infection is mediated by Ag-specific CD8 T cell responses, which are highly regulated by still poorly understood mechanisms. In this study, we analyzed differentiation and clonotypic dynamics of EBV- and CMV-specific T cells from healthy adults. Although these T lymphocytes included all subsets, from early-differentiated (EM/CD28(pos)) to late-differentiated (EMRA/CD28(neg)) stages, they varied in the sizes/proportions of these subsets. In-depth clonal composition analyses revealed TCR repertoires, which were highly restricted for CMV- and relatively diverse for EBV-specific cells. Virtually all virus-specific clonotypes identified in the EMRA/CD28(neg) subset were also found within the pool of less differentiated "memory" cells. However, striking differences in the patterns of dominance were observed among these subsets, because some clonotypes were selected with differentiation while others were not. Late-differentiated CMV-specific clonotypes were mostly characterized by TCR with lower dependency on CD8 coreceptor interaction. Yet all clonotypes displayed similar functional avidities, suggesting a compensatory role of CD8 in the clonotypes of lower TCR avidity. Importantly, clonotype selection and composition of each virus-specific subset upon differentiation was highly preserved over time, with the presence of the same dominant clonotypes at specific differentiation stages within a period of 4 years. Remarkably, clonotypic distribution was stable not only in late-differentiated but also in less-differentiated T cell subsets. Thus, T cell clonotypes segregate with differentiation, but the clonal composition once established is kept constant for at least several years. These findings reveal novel features of the highly sophisticated control of steady state protective T cell activity in healthy adults.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, three strains of Trypanosoma cruzi were isolated at the same time and in the same endemic region in Mexico from a human patient with chronic chagasic cardiomyopathy (RyC-H); vector (Triatoma barberi) (RyC-V); and rodent reservoir (Peromyscus peromyscus) (RyC-R). The three strains were characterized by multilocus enzyme electrophoresis, random amplified polymorphic DNA, and by pathological profiles in experimental animals (biodemes). Based on the analysis of genetic markers the three parasite strains were typed as belonging to T. cruzi I major group, discrete typing unit 1. The pathological profile of RyC-H and RyC-V strains indicated medium virulence and low mortality and, accordingly, the strains should be considered as belonging to biodeme Type III. On the other hand, the parasites from RyC-R strain induced more severe inflammatory processes and high mortality (> 40%) and were considered as belonging to biodeme Type II. The relationship between genotypes and biological characteristics in T. cruzi strains is still debated and not clearly understood. An expert committee recommended in 1999 that Biodeme Type III would correspond to T. cruzi I group, whereas Biodeme Type II, to T. cruzi II group. Our findings suggest that, at least for Mexican isolates, this correlation does not stand and that biological characteristics such as pathogenicity and virulence could be determined by factors different from those identified in the genotypic characterization