871 resultados para Dependent Failures, Interactive Failures, Interactive Coefficients, Reliability, Complex System
Resumo:
Virtual reality has the potential to improve visualisation of building design and construction, but its implementation in the industry has yet to reach maturity. Present day translation of building data to virtual reality is often unidirectional and unsatisfactory. Three different approaches to the creation of models are identified and described in this paper. Consideration is given to the potential of both advances in computer-aided design and the emerging standards for data exchange to facilitate an integrated use of virtual reality. Commonalities and differences between computer-aided design and virtual reality packages are reviewed, and trials of current system, are described. The trials have been conducted to explore the technical issues related to the integrated use of CAD and virtual environments within the house building sector of the construction industry and to investigate the practical use of the new technology.
Resumo:
In the earth sciences, data are commonly cast on complex grids in order to model irregular domains such as coastlines, or to evenly distribute grid points over the globe. It is common for a scientist to wish to re-cast such data onto a grid that is more amenable to manipulation, visualization, or comparison with other data sources. The complexity of the grids presents a significant technical difficulty to the regridding process. In particular, the regridding of complex grids may suffer from severe performance issues, in the worst case scaling with the product of the sizes of the source and destination grids. We present a mechanism for the fast regridding of such datasets, based upon the construction of a spatial index that allows fast searching of the source grid. We discover that the most efficient spatial index under test (in terms of memory usage and query time) is a simple look-up table. A kd-tree implementation was found to be faster to build and to give similar query performance at the expense of a larger memory footprint. Using our approach, we demonstrate that regridding of complex data may proceed at speeds sufficient to permit regridding on-the-fly in an interactive visualization application, or in a Web Map Service implementation. For large datasets with complex grids the new mechanism is shown to significantly outperform algorithms used in many scientific visualization packages.
Resumo:
The potential interactive effects of future atmospheric CO2 concentrations and plant diversity loss on the functioning of belowground systems are still poorly understood. Using a microcosm greenhouse approach with assembled grassland plant communities of different diversity (1, 4 and 8 species), we explored the interactive effects between plant species richness and elevated CO2 (ambient and + 200 p.p.m.v. CO2) on earthworms and microbial biomass. We hypothesised that the beneficial effect of increasing plant species richness on earthworm performance and microbial biomass will be modified by elevated CO2 through impacts on belowground organic matter inputs, soil water availability and nitrogen availability. We found higher earthworm biomass in eight species mixtures under elevated CO2, and higher microbial biomass under elevated CO2 in four and eight species mixtures if earthworms were present. The results suggest that plant driven changes in belowground organic matter inputs, soil water availability and nitrogen availability explain the interactive effects of CO2 and plant diversity on the belowground compartment. The interacting mechanisms by which elevated CO2 modified the impact of plant diversity on earthworms and microorganisms are discussed.
Resumo:
Dynamic multi-user interactions in a single networked virtual environment suffer from abrupt state transition problems due to communication delays arising from network latency--an action by one user only becoming apparent to another user after the communication delay. This results in a temporal suspension of the environment for the duration of the delay--the virtual world `hangs'--followed by an abrupt jump to make up for the time lost due to the delay so that the current state of the virtual world is displayed. These discontinuities appear unnatural and disconcerting to the users. This paper proposes a novel method of warping times associated with users to ensure that each user views a continuous version of the virtual world, such that no hangs or jumps occur despite other user interactions. Objects passed between users within the environment are parameterized, not by real time, but by a virtual local time, generated by continuously warping real time. This virtual time periodically realigns itself with real time as the virtual environment evolves. The concept of a local user dynamically warping the local time is also introduced. As a result, the users are shielded from viewing discontinuities within their virtual worlds, consequently enhancing the realism of the virtual environment.
Resumo:
The dinuclear complex [{Ru(CN)4}2(μ-bppz)]4− shows a strongly solvent-dependent metal–metal electronic interaction which allows the mixed-valence state to be switched from class 2 to class 3 by changing solvent from water to CH2Cl2. In CH2Cl2 the separation between the successive Ru(II)/Ru(III) redox couples is 350 mVand the IVCT band (from the UV/Vis/NIR spectroelectrochemistry) is characteristic of a borderline class II/III or class III mixed valence state. In water, the redox separation is only 110 mVand the much broader IVCT transition is characteristic of a class II mixed-valence state. This is consistent with the observation that raising and lowering the energy of the d(π) orbitals in CH2Cl2 or water, respectively, will decrease or increase the energy gap to the LUMO of the bppz bridging ligand, which provides the delocalisation pathway via electron-transfer. IR spectroelectrochemistry could only be carried out successfully in CH2Cl2 and revealed class III mixed-valence behaviour on the fast IR timescale. In contrast to this, time-resolved IR spectroscopy showed that the MLCTexcited state, which is formulated as RuIII(bppz˙−)RuII and can therefore be considered as a mixed-valence Ru(II)/Ru(III) complex with an intermediate bridging radical anion ligand, is localised on the IR timescale with spectroscopically distinct Ru(II) and Ru(III) termini. This is because the necessary electron-transfer via the bppz ligand is more difficult because of the additional electron on bppz˙− which raises the orbital through which electron exchange occurs in energy. DFT calculations reproduce the electronic spectra of the complex in all three Ru(II)/Ru(II), Ru(II)/Ru(III) and Ru(III)/Ru(III) calculations in both water and CH2Cl2 well as long as an explicit allowance is made for the presence of water molecules hydrogen-bonded to the cyanides in the model used. They also reproduce the excited-state IR spectra of both [Ru(CN)4(μ-bppz)]2– and [{Ru(CN)4}2(μ-bppz)]4− very well in both solvents. The reorganization of the water solvent shell indicates a possible dynamical reason for the longer life time of the triplet state in water compared to CH2Cl2.
Resumo:
A better understanding of the systemic processes by which innovation occurs is useful, both conceptually and to inform policymaking in support of innovation in more sustainable technologies. This paper analyses current innovation systems in the UK for a range of new and renewable energy technologies, and generates policy recommendations for improving the effectiveness of these innovation systems. Although incentives are in place in the UK to encourage innovation in these technologies, system failures—or ‘gaps’—are identified in moving technologies along the innovation chain, preventing their successful commercialisation. Sustained investment will be needed for these technologies to achieve their potential. It is argued that a stable and consistent policy framework is required to help create the conditions for this. In particular, such a framework should be aimed at improving risk/reward ratios for demonstration and pre-commercial stage technologies. This would enhance positive expectations, stimulate learning effects leading to cost reductions, and increase the likelihood of successful commercialisation.
Resumo:
Soluble reactive phosphorus (SRP) plays a key role in eutrophication, a global problem decreasing habitat quality and in-stream biodiversity. Mitigation strategies are required to prevent SRP fluxes from exceeding critical levels, and must be robust in the face of potential changes in climate, land use and a myriad of other influences. To establish the longevity of these strategies it is therefore crucial to consider the sensitivity of catchments to multiple future stressors. This study evaluates how the water quality and hydrology of a major river system in the UK (the River Thames) respond to alterations in climate, land use and water resource allocations, and investigates how these changes impact the relative performance of management strategies over an 80-year period. In the River Thames, the relative contributions of SRP from diffuse and point sources vary seasonally. Diffuse sources of SRP from agriculture dominate during periods of high runoff, and point sources during low flow periods. SRP concentrations rose under any future scenario which either increased a) surface runoff or b) the area of cultivated land. Under these conditions, SRP was sourced from agriculture, and the most effective single mitigation measures were those which addressed diffuse SRP sources. Conversely, where future scenarios reduced flow e.g. during winters of reservoir construction, the significance of point source inputs increased, and mitigation measures addressing these issues became more effective. In catchments with multiple point and diffuse sources of SRP, an all-encompassing effective mitigation approach is difficult to achieve with a single strategy. In order to attain maximum efficiency, multiple strategies might therefore be employed at different times and locations, to target the variable nature of dominant SRP sources and pathways.
Resumo:
The climatology of ozone produced by the Canadian Middle Atmosphere Model (CMAM) is presented. This three-dimensional global model incorporates the radiative feedbacks of ozone and water vapor calculated on-line with a photochemical module. This module includes a comprehensive gas-phase reaction set and a limited set of heterogeneous reactions to account for processes occurring on background sulphate aerosols. While transport is global, photochemistry is solved from about 400 hPa to the top of the model at ∼95 km. This approach provides a complete and comprehensive representation of transport, emission, and photochemistry of various constituents from the surface to the mesopause region. A comparison of model results with observations indicates that the ozone distribution and variability are in agreement with observations throughout most of the model domain. Column ozone annual variation is represented to within 5–10% of the observations except in the Southern Hemisphere for springtime high latitudes. The vertical ozone distribution is generally well represented by the model up to the mesopause region. Nevertheless, in the upper stratosphere, the model generally underestimates the amount of ozone as well as the latitudinal tilting of ozone isopleths at high latitude. Ozone variability is analyzed and compared with measurements. The comparison shows that the phase and amplitude of the seasonal variation as well as shorter timescale variations are well represented by the model at various latitudes and heights. Finally, the impact of incorporating ozone radiative feedback on the model climatology is isolated. It is found that the incorporation of ozone radiative feedback results in a cooling of ∼8 K in the summer stratopause region, which corrects a warm bias that results when climatological ozone is used.
Resumo:
In this project we explore how to enhance the experience and understanding of cultural heritage in museums and heritage sites by creating interactive multisensory objects collaboratively with artists, technologists and people with learning disabilities. We focus here on workshops conducted during the first year of a three year project in which people with learning disabilities each constructed a 'sensory box' to represent their experiences of Speke Hall, a heritage site in the UK. The box is developed further in later workshops which explore aspects of physicality and how to appeal to the entire range of senses, making use of Arduino technology and basic sensors to enable an interactive user experience.
Resumo:
This paper discusses the development of the Virtual Construction Simulator (VCS) 3 - a simulation game-based educational tool for teaching construction schedule planning and management. The VCS3 simulation game engages students in learning the concepts of planning and managing construction schedules through goal driven exploration, employed strategies, and immediate feedback. Through the planning and simulation mode, students learn the difference between the as-planned and as-built schedules resulting from varying factors such as resource availability, weather and labor productivity. This paper focuses on the development of the VCS3 and its construction physics model. Challenges inherent in the process of identifying variables and their relationships to reliably represent and simulate the dynamic nature of planning and managing of construction projects are also addressed.