748 resultados para Deglaciation
Resumo:
It has long been recognized that the transition from the last glacial to the present interglacial was punctuated by a brief and intense return to cold conditions. This extraordinary event, referred to by European palynologists as the Younger Dryas, was centered in the northern Atlantic basin. Evidence is accumulating that it may have been initiated and terminated by changes in the mode of operation of the northern Atlantic Ocean. Further, it appears that these mode changes may have been triggered by diversions of glacial meltwater between the Mississippi River and the St. Lawrence River drainage systems. We report here Accelerator Mass Spectrometry (AMS) radiocarbon results on two strategically located deep-sea cores. One provides a chronology for surface water temperatures in the northern Atlantic and the other for the meltwater discharge from the Mississippi River. Our objective in obtaining these results was to strengthen our ability to correlate the air temperature history for the northern Atlantic basin with the meltwater history for the Laurentian ice sheet.
Resumo:
Evidence for abrupt climate changes on millennial and shorter timescales is widespread in marine and terrestrial climate records (Dansgard et al., 1993, doi:10.1038/364218a0; Bond et al., 1993, doi:10.1038/365143a0; Charles et al., 1996, doi:10.1016/0012-821X(96)00083-0, Bard et al., 1997, doi:10.1038/385707a0). Rapid reorganization of ocean circulation is considered to exert some control over these changes (Broecker et al., 1985, doi:10.1038/315021a0), as are shifts in the concentrations of atmospheric greenhouse gases (Broecker, 1994, doi:10.1038/372421a0). The response of the climate system to these two influences is fundamentally different: slowing of thermohaline overturn in the North Atlantic Ocean is expected to decrease northward heat transport by the ocean and to induce warming of the tropical Atlantic (Crowley, 1992, doi:10.1029/92PA01058; Manabe and Stouffer, 1997, doi:10.1029/96PA03932), whereas atmospheric greenhouse forcing should cause roughly synchronous global temperature changes (Manabe et al., 1991, doi:10.1175/1520-0442(1991)004<0785:TROACO>2.0.CO;2). So these two mechanisms of climate change should be distinguishable by the timing of surface-water temperature variations relative to changes in deep-water circulation. Here we present a high-temporal-resolution record of sea surface temperatures from the western tropical North Atlantic Ocean which spans the past 29,000 years, derived from measurements of temperature-sensitive alkenone unsaturation in sedimentary organic matter. We find significant warming is documented for Heinrich event H1 (16,900-15,400 calendar years bp) and the Younger Dryas event (12,900-11,600 cal. yr bp), which were periods of intense cooling in the northern North Atlantic. Temperature changes in the tropical and high-latitude North Atlantic are out of phase, suggesting that the thermohaline circulation was the important trigger for these rapid climate changes.
Resumo:
Benthic and planktonic 14C ages are presented for the last glacial termination from marine sediment core VM21-30 from 617 m in the eastern equatorial Pacific. The benthic-planktonic 14C age differences in the core increased to more than 6000 years between Heinrich 1 time and the end of the Younger Dryas period. Several replicated 14C ages on different benthic and planktonic species from the same samples within the deglacial section of the core indicate a minimal amount of bioturbation. Scanning electron microscopy reveals no evidence of calcite alteration or contamination. The oxygen isotope stratigraphy of planktonic and benthic foraminifera does not indicate anomalously old (glacial age) values, and there is no evidence of a large negative stable carbon isotope excursion in benthic foraminifera that would indicate input of old carbon from dissociated methane. It appears, therefore, that the benthic 14C excursion in this core is not an artifact of diagenesis, bioturbation, or a pulse of methane. A benthic D14C stratigraphy reconstructed from the 14C ages from the deglacial section of VM21-30 appears to match that of Baja margin core MV99-MC19/GC31/PC08 (705 m), but the magnitude of the low-14C excursion is much larger in the VM21-30 record. This would seem to imply that the VM21-30 core was closer to the source of 14C-depleted waters during the deglaciation, but the source of this CO2 remains elusive.
Resumo:
The supply of nutrients to the low-latitude thermocline is largely controlled by intermediate-depth waters formed at the surface in the high southern latitudes. Silicic acid is an essential macronutrient for diatoms, which are responsible for a significant portion of marine carbon export production. Changes in ocean circulation, such as those observed during the last deglaciation, would influence the nutrient composition of the thermocline and, therefore, the relative abundance of diatoms in the low latitudes. Here we present the first record of the silicic acid content of the Atlantic over the last glacial cycle. Our results show that at intermediate depths of the South Atlantic, the silicic acid concentration was the same at the Last Glacial Maximum (LGM) as it is today, overprinted by high silicic acid pulses that coincided with abrupt changes in ocean and atmospheric circulation during Heinrich Stadials and the Younger Dryas. We suggest these pulses were caused by changes in intermediate water formation resulting from shifts in the subpolar hydrological cycle, with fundamental implications for the nutrient supply to the Atlantic.
Resumo:
Ice loss from the marine-based, potentially unstable West Antarctic Ice Sheet (WAIS) contributes to current sea-level rise and may raise sea level by up to 3.3 to 5 meters in the future. Over the past few decades, glaciers draining the WAIS into the Amundsen Sea Embayment (ASE) have shown accelerated ice flow, rapid thinning and grounding-line retreat. However, the long-term context of this ice-sheet retreat is poorly constrained, limiting our ability to accurately predict future WAIS behaviour. Here we present a new chronology for WAIS retreat from the inner continental shelf of the eastern ASE based on radiocarbon dates from three marine sediment cores. The ages document a retreat of the grounding line to within ~93 km of its modern position before 11.7±0.7 kyr BP (thousand years before present). This early deglaciation is consistent with ages for grounding-line retreat from the western ASE. Our new data demonstrate that, other than in the Ross Sea, WAIS retreat in the ASE has not continued progressively since the Last Glacial Maximum. Furthermore, our results suggest that the grounding-line position in the ASE was predominantly stable throughout the Holocene, and that any episodes of fast retreat similar to that observed today must have been short-lived. Alternatively, today's rapid retreat was unprecedented during the Holocene. Therefore, the current ice loss must originate in recent changes in regional climate, ocean circulation or ice-sheet dynamics. Incorporation of these results into models is essential to produce robust predictions of future ice-sheet change and its contribution to sea-level rise.