992 resultados para Cycle Decomposition
Resumo:
本文综述了全球碳循环研究、中国陆地生态系统碳循环研究及国内外草地生态系统碳循环研究的理论、方法、最新进展及主要成果。根据碱液吸收法对大针茅草原整个生长季土壤呼吸和地表凋落物分解的CO2排放速率的测定结果,分析了大针茅草原土壤呼吸和凋落物分解的CO2排放速率季节动态,并比较了二者对大针茅草原土壤呼吸和凋落物分解共同的CO2排放量的贡献。探讨了大针茅草原土壤呼吸和凋落物分解的CO2排放速率与各种生物因子、环境因子的关系,以及生物因子、环境因子对大针茅草原土壤呼吸和凋落物分解的CO2排放速率的协同作用;建立了土壤呼吸和凋落物分解的CO2释放速率与各种生物因子、环境因子及与它们的协同效应的回归模型。根据所建立的模型估算了大针茅草原土壤呼吸和凋落物分解CO2年排放速率。最后,计算了大针茅草原生态系统各碳库的贮量及它们之间的流量,建立了大针茅草原生态系统的碳循环模式,初步评价了大针茅草原目前对于大气碳库的源汇功能。 本文初步得出以下结论: 1)在整个观测期内,大针茅草原由土壤呼吸和地表凋落物分解的CO2排放速率的季节动态呈梯形曲线型,它在8月下旬达到最大值2.51gCm-2d-l; 2)大针茅草原土壤呼吸和凋落物分解速率的CO2排放速率季节变化趋势与地上生物量,尤其是地上绿色生物量部分的季节动态有一‘定同步性;地表凋落物层有减缓土壤向大气排放CO2的作用; 3)建立了大针茅草原土壤呼吸和凋落物分解速率的CO2排放速率y(gCm-2d-1)与绿色生物量x1(g)、降水量X2 (mm)的回归模型: Y= -1.556+0.0171 x+0.0169 X2 (当y≤1.5867时) Y= 0.6395 - 0.0059 x+0.0103 X2 (当y>1.5867时) 其相关系数r为0.9954。 4)根据建立的模型估算大针茅草原土壤呼吸和凋落物分解C02年排放速率为367.81gCm-2Y-1; 5)大针茅草原目前对于大气碳库来说是一个碳汇,它每年从大气中净吸收C02速率平均为147.5gCm-2Y-1。
Resumo:
As the global population has increased, so have human influences on the global environment. ... How can we better understand and predict these natural and potential anthropogenic variations? One way is to develop a model that can accurately describe all the components of the hydrologic cycle, rather than just the end result variables such as precipitation and soil moisture. If we can predict and simulate variations in evaporation and moisture convergence, as well as precipitation, then we will have greater confidence in our ability to at least model precipitation variations. Therefore, we describe here just how well we can model relevant aspects of the global hydrologic cycle. In particular, we determine how well we can model the annual and seasonal mean global precipitation, evaporation, and atmospheric water vapor transport.
Resumo:
We describe a 2.5-degree gridpoint atmospheric hydrology/climatology of precipitable water, precipitation, atmospheric moisture convergence, and a residual evaporation or evapotranspiration for the coterminous United States. We also describe a large-scale surface hydrology/climatology of a residual soil moisture, streamflow divergence, or runoff, as well as precipitation and evaporation. Annual and seasonal means and interrelationships among various components of the hydrologic cycles are discussed.
Resumo:
Higher resolution time-stratigraphic records suggest correlation of lower frequency paleoclimatic events with Milankovitch obliquity/precessional cycles and of higher frequency events with the evidently resonance-related Pettersson maximum tidal force (MTF) model. Subsequently published records, mainly pollen, seemingly confirm that atmospheric resonances may have modulated past climatic changes in phase with average MTF cycles of 1668, 1112, and 556 years, as calculated in anomalistic years from planetary movements by Stacey. Stacey accepts Pettersson's dating of AD 1433 (517 YBP) for the last major perihelian spring tide based solely on calculations of moon- and earth-orbital relations to the sun. Use of AD 1433 as an origin for the tidal resonance model seemingly continues to provide a best fit for the timing of cyclical patterns in the presented paleoclimate time series.
Effects of grazing and rainfall variability on root and shoot decomposition in a semi-arid grassland
Resumo:
Hydrogenated amorphous silicon (a-Si:H) thin films have been deposited from silane using a novel photo-enhanced decomposition technique. The system comprises a hydrogen discharge lamp contained within the reaction vessel; this unified approach allows high energy photon excitation of the silane molecules without absorption by window materials or the need for mercury sensitisation. The film growth rates (exceeding 4 Angstrom/s) and material properties obtained are comparable to those of films produced by plasma-enhanced CVD techniques. The reduction of energetic charged particles in the film growth region should enable the fabrication of cleaner semiconductor/insulator interfaces in thin-film transistors.
Resumo:
The monthly average temperatures at Puttalam Lagoon, Dutch Bay, Portugal Bay towards Kovilmunai and Portugal Bay towards Pallugaturai showed a distinct annual cycle. The peak was in April and values gradually fell till September. There was a further gradual fall in temperature from October to January. The highest temperatures in all four stations were in April. The highest salinities in all the stations were from May to October i.e., during the south-west monsoon. The salinities at Dutch Bay and Portugal Bay were high in March and April corresponding to the highest temperatures reached during these months. Two maxima have been observed in phytoplankton production. A primary maximum in May-June and a secondary maximum in October. The primary and secondary maxima are due to the influx of nutrient laden waters from the rivers Kal Aru and Pomparippu Aru. The phytoplankton producing blooms were Rhizosolenia alata. Rhizosolenia imbricata, Chaetoceros lascinosus, Chaetoceros pervianus, Ch,aetoceros diversus, Coscinodiscus gigas, Thallasionema nitzschioides, Thalassiosira subtilis, Thallassiothrix frauenfeldii, Asterionella japonica, Sceletonema costatum, Bacteriastrum varians and Biddulphia sinensis. Sudden outbursts of a single species were common. These diatoms were species of Chaetoceros and Rhizosolenia, and Thallassiothrix frauenfeldii. Wide fluctuations have been observed in the distribution of phytoplankton but no definite conclusions can be drawn as the period of observation was only one year.