938 resultados para Cryptographic key


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper exploits survey information on reservation wages and data on actual wages from the European Community Household Panel to deduce, in the manner of Lancaster and Chesher, additional parameters of a stylized structural search model; specifically, reservation wage and transition/duration elasticities. The informational requirements of this approach are minimal, thereby facilitating comparisons between countries. Further, its policy content is immediate in so far as the impact of unemployment benefit rules and measures increasing the arrival rate of job offers are concerned. These key elasticities are computed for the United Kingdom and 11 other European nations.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Hoxa9 and Meis1 genes represent important oncogenic collaborators activated in a significant proportion of human leukemias with genetic alterations in the MLL gene. In this study, we show that the transforming property of Meis1 is modulated by 3 conserved domains, namely the Pbx interaction motif (PIM), the homeodomain, and the C-terminal region recently described to possess transactivating properties. Meis1 and Pbx1 interaction domain-swapping mutants are dysfunctional separately, but restore the full oncogenic activity of Meis1 when cotransduced in primary cells engineered to overexpress Hoxa9, thus implying a modular nature for PIM in Meis1-accelerated transformation. Moreover, we show that the transactivating domain of VP16 can restore, and even enhance, the oncogenic potential of the Meis1 mutant lacking the C-terminal 49 amino acids. In contrast to Meis1, the fusion VP16-Meis1 is spontaneously oncogenic, and all leukemias harbor genetic activation of endogenous Hoxa9 and/or Hoxa7, suggesting that Hoxa gene activation represents a key event required for the oncogenic activity of VP16-Meis1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Little is known about the origin of basal-like breast cancers, an aggressive disease that is highly similar to BRCA1-mutant breast cancers. p63 family proteins that are structurally related to the p53 suppressor protein are known to function in stem cell regulation and stratified epithelia development in multiple tissues, and p63 expression may be a marker of basal-like breast cancers. Here we report that Delta Np63 isoforms of p63 are transcriptional targets for positive regulation by BRCA1. Our analyses of breast cancer tissue microarrays and BRCA1-modulated breast cancer cell lines do not support earlier reports that p63 is a marker of basal-like or BRCA1 mutant cancers. Nevertheless, we found that BRCA1 interacts with the specific p63 isoform Delta Np63 gamma along with transcription factor isoforms AP-2 alpha and AP-2 gamma. BRCA1 required Delta Np63 gamma and AP-2 gamma to localize to an intronic enhancer region within the p63 gene to upregulate transcription of the Delta Np63 isoforms. In mammary stem/progenitor cells, siRNA- mediated knockdown of Delta Np63 expression resulted in genomic instability, increased cell proliferation, loss of DNA damage checkpoint control, and impaired growth control. Together, our findings establish that transcriptional upregulation of Delta Np63 proteins is critical for BRCA1 suppressor function and that defects in BRCA1-Delta Np63 signaling are key events in the pathogenesis of basal-like breast cancer. Cancer Res; 71( 5); 1933-44. (c) 2011 AACR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CCN3, a founding member of the CCN family of growth regulators, was linked with hematology in 2003(1) when it was detected in human serum. CCN3 is expressed and secreted by hematopoietic progenitor cells in normal bone marrow. CCN3 acts through the core stem cell signalling pathways including Notch and Bone Morphogenic Protein, connecting CCN3 with the modulation of self-renewal and maturation of a number of cell lineages including hematopoietic, osteogenic and chondrogenic. CCN3 expression is disrupted in Chronic Myeloid Leukemia as a consequence of the BCR-ABL oncogene and allows the leukemic clone to evade growth regulation. In contrast, naive cord blood progenitors undergo enhanced clonal expansion in response to CCN3. Altered CCN3 expression is associated with numerous solid tumors including glioblastoma, melanoma. adrenocortical tumours, prostate cancer and bone malignancies including osteosarcoma. Mature CCN3 protein has five distinct modules and truncated protein variants with altered function are found in many cancers. Regulation by CCN3 is therefore cell type and isoform specific. CCN3 has emerged as a key player in stem cell regulation, hematopoiesis and a crucial component within the bone marrow microenvironment. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To understand the molecular etiology of osteosarcoma, we isolated and characterized a human osteosarcoma cell line (OS1). OS1 cells have high osteogenic potential in differentiation induction media. Molecular analysis reveals OS1 cells express the pocket protein pRB and the runt-related transcription factor Runx2. Strikingly, Runx2 is expressed at higher levels in OS1 cells than in human fetal osteoblasts. Both pRB and Runx2 have growth suppressive potential in osteoblasts and are key factors controlling competency for osteoblast differentiation. The high levels of Runx2 clearly suggest osteosarcomas may form from committed osteoblasts that have bypassed growth restrictions normally imposed by Runx2. Interestingly, OS1 cells do not exhibit p53 expression and thus lack a functional p53/p21 DNA damage response pathway as has been observed for other osteosarcoma cell types. Absence of this pathway predicts genomic instability and/or vulnerability to secondary mutations that may counteract the anti-proliferative activity of Runx2 that is normally observed in osteoblasts. We conclude OS1 cells provide a valuable cell culture model to examine molecular events that are responsible for the pathologic conversion of phenotypically normal osteoblast precursors into osteosarcoma cells.