983 resultados para Cross platform
Resumo:
We compare the high energy behaviour of hadronic photon-photon cross-sections in different models. We find that the photon-photon cross-section appears to rise faster than the purely hadronic ones (proton-proton and proton-antiproton).
Resumo:
We describe a QCD motivated model for total cross-sections which uses the eikonal representation and incorporates QCD mini-jets to drive the rise with energy of the cross-section, while the impact parameter distribution is obtained through the Fourier transform of the transverse momentum distribution of soft gluons emitted in the parton-parton interactions giving rise to mini-jets in the final state. A singular but integral expression for the running coupling constant in the infrared region is part of this model.
Resumo:
In this contribution, we discuss a total cross-section model which can be applied to both photon and purely hadronic processes. We find that the model can reproduce photo-production cross-sections, as well as extrapolations of gamma p processes to gamma p using vector meson dominance models, with minimal modifications from the proton case.
Resumo:
A force-torque sensor capable of accurate measurement of the three components of externally applied forces and moments is required for force control in robotic applications involving assembly operations. The goal in this paper is to design a Stewart platform based force torque sensor at a near-singular configuration sensitive to externally applied moments. In such a configuration, we show an enhanced mechanical amplification of leg forces and thereby higher sensitivity for the applied external moments. In other directions, the sensitivity will be that of a normal load sensor determined by the sensitivity of the sensing element and the associated electronic amplification, and all the six components of the force and torque can be sensed. In a sensor application, the friction, backlash and other non-linearities at the passive spherical joints of the Stewart platform will affect the measurements in unpredictable ways. In this sensor, we use flexural hinges at the leg interfaces of the base and platform of the sensor. The design dimensions of the flexure joints in the sensor have been arrived at using FEA. The sensor has been fabricated, assembled and instrumented. It has been calibrated for low level loads and is found to show linearity and marked sensitivity to moments about the three orthogonal X, Y and Z axes. This sensor is compatible for usage as a wrist sensor for a robot under development at ISRO Satellite Centre.
Resumo:
Poly(acrylic acid-co-sodium acrylate-co-acrylamide) superabsorbent polymers (SAPs) cross-linked with ethylene glycol dimethacrylate (EGDMA) were synthesized by inverse suspension polymerization. The SAPs were swollen in DI water, and it was found that the equilibrium swelling capacities varied with the acrylamide content. The SAPs were subjected to reversible swelling/deswelling cycles in DI water and aqueous NaCl solution, respectively. The effect of the addition of an electrolyte on the swelling of the SAP was explored. The equilibrium swelling capacity of the SAPs was found to decrease with increasing concentration of added electrolyte in the swelling medium. The effect of the particle size of the dry SAPs on the swelling properties was also investigated. A first order model was used to describe the kinetics of swelling/deswelling, and the equilibrium swelling capacity, limiting swelling capacity, and swelling/deswelling rate coefficients were determined.
Resumo:
An aerobic oxidative cross-dehydrogenative coupling reaction between sp(3) C-H and sp(2) C-H bonds is developed by employing a vanadium catalyst (10 mol%) in an aqueous medium using molecular oxygen as the oxidant. This environmentally benign strategy exhibits larger substrate scope and shows high regioselectivity.
Resumo:
We discuss expectations for the total and inelastic cross sections at LHC CM energies root s = 7 TeV and 14 TeV obtained in an eikonal minijet model augmented by soft gluon k(t)-resummation, which we describe in some detail. We present a band of predictions which encompass recent LHC data and suggest that the inelastic cross section described by two-channel eikonal models include only uncorrelated processes. We show that this interpretation of the model is supported by the LHC data.
Resumo:
Three-dimensional effects are a primary source of discrepancy between the measured values of automotive muffler performance and those predicted by the plane wave theory at higher frequencies. The basically exact method of (truncated) eigenfunction expansions for simple expansion chambers involves very complicated algebra, and the numerical finite element method requires large computation time and core storage. A simple numerical method is presented in this paper. It makes use of compatibility conditions for acoustic pressure and particle velocity at a number of equally spaced points in the planes of the junctions (or area discontinuities) to generate the required number of algebraic equations for evaluation of the relative amplitudes of the various modes (eigenfunctions), the total number of which is proportional to the area ratio. The method is demonstrated for evaluation of the four-pole parameters of rigid-walled, simple expansion chambers of rectangular as well as circular cross-section for the case of a stationary medium. Computed values of transmission loss are compared with those computed by means of the plane wave theory, in order to highlight the onset (cutting-on) of various higher order modes and the effect thereof on transmission loss of the muffler. These are also compared with predictions of the finite element methods (FEM) and the exact methods involving eigenfunction expansions, in order to demonstrate the accuracy of the simple method presented here.