958 resultados para Creatine Kinase, MB Form


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Key message: Evaluation of resistance toPyrenophora teresf.maculatain barley breeding populations via association mapping revealed a complex genetic architecture comprising a mixture of major and minor effect genes. Abstract: In the search for stable resistance to spot form of net blotch (Pyrenophora teres f. maculata, SFNB), association mapping was conducted on four independent barley (Hordeum vulgare L.) breeding populations comprising a total of 898 unique elite breeding lines from the Northern Region Barley Breeding Program in Australia for discovery of quantitative trait loci (QTL) influencing resistance at seedling and adult plant growth stages. A total of 29 significant QTL were validated across multiple breeding populations, with 22 conferring resistance at both seedling and adult plant growth stages. The remaining 7 QTL conferred resistance at either seedling (2 QTL) or adult plant (5 QTL) growth stages only. These 29 QTL represented 24 unique genomic regions, of which five were found to co-locate with previously identified QTL for SFNB. The results indicated that SFNB resistance is controlled by a large number of QTL varying in effect size with large effects QTL on chromosome 7H. A large proportion of the QTL acted in the same direction for both seedling and adult responses, suggesting that phenotypic selection for SFNB resistance performed at either growth stage could achieve adequate levels of resistance. However, the accumulation of specific resistance alleles on several chromosomes must be considered in molecular breeding selection strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

C14Ht0F3NO2, P2.Jc, a = 12.523 (4), b = 7.868(6), c = 12.874 (3)A, fl = 95.2 (2) ° , O,,, = 1.47 (4), D e = 1.47 Mg m -3, Z = 4. Final R = 0.074 for 2255 observed reflections. The carboxyl group and the phenyl ring bearing the carboxyl group are nearly coplanar whereas the two phenyl rings are inclined with respect to each other at 52.8 ° . The difference between the two polymorphs of flufenamic acid lies in the geometrical disposition of the [3-(trifluoromethyl)- phenyl]amino moiety with respect to the benzoic acid moiety. As in other fenamate structures, the carboxyl group and the imino N atom are connected through an intramolecular hydrogen bond; also, pairs of centrosymmetrically related molecules are connected through hydrogen bonds involving carboxyl groups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increased activation of c-src seen in colorectal cancer is an indicator of a poor clinical prognosis, suggesting that identification of downstream effectors of c-src may lead to new avenues of therapy. Guanylyl cyclase C (GC-C) is a receptor for the gastrointestinal hormones guanylin and uroguanylin and the bacterial heat-stable enterotoxin. Though activation of GC-C by its ligands elevates intracellular cyclic GMP (cGMP) levels and inhibits cell proliferation, its persistent expression in colorectal carcinomas and occult metastases makes it a marker for malignancy. We show here that GC-C is a substrate for inhibitory phosphorylation by c-src, resulting in reduced ligand-mediated cGMP production. Consequently, active c-src in colonic cells can overcome GC-C-mediated control of the cell cycle. Furthermore, docking of the c-src SH2 domain to phosphorylated GC-C results in colocalization and further activation of c-src. We therefore propose a novel feed-forward mechanism of activation of c-src that is induced by cross talk between a receptor GC and a tyrosine kinase. Our findings have important implications in understanding the molecular mechanisms involved in the progression and treatment of colorectal cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Form political letter. Printed on Executive Committee stationery with handwritten salutation in blue ink. Invitation to be a Vice President to ratify nominations of Greely and Brown, Democratic party.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examined the psychometric properties of a Persian translation of the Career Adapt-Abilities Scale (CAAS—Iran Form) and its relationships with career satisfaction, business opportunity identification, and entrepreneurial intentions. It was hypothesized that career adaptability relates positively to these three outcomes, even when controlling for demographic and employment characteristics. Data were provided by 204 workers from Iran. Results showed that the overall CAAS score and sub-dimension scores (concern, control, curiosity, and confidence) were highly reliable. Moreover, confirmatory factor analyses indicated that the CAAS—Iran Form measures four distinct dimensions that can be combined into a higher-order career adaptability factor. Findings also demonstrated criterion-related validity of the scale with regard to career satisfaction and entrepreneurial intentions. In contrast, overall career adaptability was not significantly related to opportunity identification, while concern related positively, and control related negatively to opportunity identification. Overall, the CAAS—Iran Form has very good psychometric properties and predicts important career outcomes, suggesting that it can be used for career counseling and future research with Persian-speaking workers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Web data can often be represented in free tree form; however, free tree mining methods seldom exist. In this paper, a computationally fast algorithm FreeS is presented to discover all frequently occurring free subtrees in a database of labelled free trees. FreeS is designed using an optimal canonical form, BOCF that can uniquely represent free trees even during the presence of isomorphism. To avoid enumeration of false positive candidates, it utilises the enumeration approach based on a tree-structure guided scheme. This paper presents lemmas that introduce conditions to conform the generation of free tree candidates during enumeration. Empirical study using both real and synthetic datasets shows that FreeS is scalable and significantly outperforms (i.e. few orders of magnitude faster than) the state-of-the-art frequent free tree mining algorithms, HybridTreeMiner and FreeTreeMiner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Digital image

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The juvenile sea squirt wanders through the sea searching for a suitable rock or hunk of coral to cling to and make its home for life. For this task it has a rudimentary nervous system. When it finds its spot and takes root, it doesn't need its brain any more so it eats it. It's rather like getting tenure. Daniel C. Dennett (from Consciousness Explained, 1991) The little sea squirt needs its brain for a task that is very simple and short. When the task is completed, the sea squirt starts a new life in a vegetative state, after having a nourishing meal. The little brain is more tightly structured than our massive primate brains. The number of neurons is exact, no leeway in neural proliferation is tolerated. Each neuroblast migrates exactly to the correct position, and only a certain number of connections with the right companions is allowed. In comparison, growth of a mammalian brain is a merry mess. The reason is obvious: Squirt brain needs to perform only a few, predictable functions, before becoming waste. The more mobile and complex mammals engage their brains in tasks requiring quick adaptation and plasticity in a constantly changing environment. Although the regulation of nervous system development varies between species, many regulatory elements remain the same. For example, all multicellular animals possess a collection of proteoglycans (PG); proteins with attached, complex sugar chains called glycosaminoglycans (GAG). In development, PGs participate in the organization of the animal body, like in the construction of parts of the nervous system. The PGs capture water with their GAG chains, forming a biochemically active gel at the surface of the cell, and in the extracellular matrix (ECM). In the nervous system, this gel traps inside it different molecules: growth factors and ECM-associated proteins. They regulate the proliferation of neural stem cells (NSC), guide the migration of neurons, and coordinate the formation of neuronal connections. In this work I have followed the role of two molecules contributing to the complexity of mammalian brain development. N-syndecan is a transmembrane heparan sulfate proteoglycan (HSPG) with cell signaling functions. Heparin-binding growth-associated molecule (HB-GAM) is an ECM-associated protein with high expression in the perinatal nervous system, and high affinity to HS and heparin. N-syndecan is a receptor for several growth factors and for HB-GAM. HB-GAM induces specific signaling via N-syndecan, activating c-Src, calcium/calmodulin-dependent serine protein kinase (CASK) and cortactin. By studying the gene knockouts of HB-GAM and N-syndecan in mice, I have found that HB-GAM and N-syndecan are involved as a receptor-ligand-pair in neural migration and differentiation. HB-GAM competes with the growth factors fibriblast growth factor (FGF)-2 and heparin-binding epidermal growth factor (HB-EGF) in HS-binding, causing NSCs to stop proliferation and to differentiate, and affects HB-EGF-induced EGF receptor (EGFR) signaling in neural cells during migration. N-syndecan signaling affects the motility of young neurons, by boosting EGFR-mediated cell migration. In addition, these two receptors form a complex at the surface of the neurons, probably creating a motility-regulating structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The circulatory system consists of the blood and lymphatic vessels. While blood vessels transport oxygen, cells, and nutrients to tissues, the lymphatic vessels collect fluid, cells, and plasma proteins from tissues to return back to the blood circulation. Angiogenesis, the growth of new blood vessels from pre-existing ones, is an important process involved in several physiological conditions such as inflammation, wound healing, and embryonic development. Furthermore, angiogenesis is found in many pathological conditions such as atherosclerosis and the growth and differentiation of solid tumors. Many tumor types spread via lymphatic vessels to form lymph node metastasis. The elucidation of the molecular players coordinating development of the vascular system has provided an array of tools for further insight of the circulatory system. The discovery of the Vascular Endothelial Growth Factor (VEGF) family members and their tyrosine kinase receptors (VEGFRs) has facilitated the understanding of the vasculature in different physiological and pathological situations. The VEGFRs are expressed on endothelial cells and mediate the growth and maintenance of both the blood and lymphatic vasculatures. This study was undertaken to address the role of VEGFR-2 specific signaling in maturation of blood vessels during neoangiogenesis and in lymphangiogenesis. We also wanted to differentiate between VEGFR-2 and VEGFR-3 specific signaling in lymphangiogenesis. We found that specific VEGFR-2 stimulation alone by gene therapeutic methods is not sufficient for production of mature blood vessels. However, VEGFR-2 stimulation in combination with expression of platelet-derived growth factor D (PDGF-D), a recently identified member of the PDGF growth factor family, was capable of stabilizing these newly formed vessels. Signaling through VEGFR-3 is crucial during developmental lymphangiogenesis, but we showed that the lymphatic vasculature becomes independent of VEGFR-3 signaling after the postnatal period. We also found that VEGFR-2 specific stimulation cannot rescue the loss of lymphatic vessels when VEGFR-3 signaling is blocked and that VEGFR-2 specific signals promote lymphatic vessel enlargement, but are not involved in vessel sprouting to generate new lymphatic vessels in vivo, in contrast to the VEGFR-2 dependent sprouting observed in blood vessels. In addition, we compared the inhibitory effects of a small molecular tyrosine kinase inhibitor of VEGFR-2 vs. VEGFR-3 specific signaling in vitro and in vivo. Our results showed that the tyrosine kinase inhibitor could equally affect physiological and pathological processes dependent on VEGFR-2 and VEGFR-3 driven angiogenesis or lymphangiogenesis. These results provide new insights into the VEGFR specific pathways required for pre- and postnatal angiogenesis as well as lymphangiogenesis, which could provide important targets and therapies for treatment of diseases characterized by abnormal angiogenesis or lymphangiogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This practice-led research investigated the negotiation processes informing effective models of transcultural collaboration. In a creative project interweaving the image-based physicality of the Japanese dance form of butoh with the traditional Korean vocal style of p'ansori, a series of creative development cycles were undertaken with a team of artists from Australia and Korea, culminating in Deluge, a work of physical theatre. The development of interventions at 'sites of transcultural potential' resulted in improvements to the negotiation of interpersonal relationships and assisted in the emergence of a productive working environment in transculturally collaborative artistic practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

4-Methyl-5-beta-hydroxyethylthiazole kinase (ThiK) catalyses the phosphorylation of the hydroxyl group of 4-methyl-5-beta-hydroxyethylthiazole. This work reports the first crystal structure of an archaeal ThiK: that from Pyrococcus horikoshii OT3 (PhThiK) at 1.85 angstrom resolution with a phosphate ion occupying the position of the beta-phosphate of the nucleotide. The topology of this enzyme shows the typical ribokinase fold of an alpha/beta protein. The overall structure of PhThiK is similar to those of Bacillus subtilis ThiK (BsThiK) and Enterococcus faecalis V583 ThiK (EfThiK). Sequence analysis of ThiK enzymes from various sources indicated that three-quarters of the residues involved in interfacial regions are conserved. It also revealed that the amino-acid residues in the nucleotide-binding, magnesium ion-binding and substrate-binding sites are conserved. Binding of the nucleotide and substrate to the ThiK enzyme do not influence the quaternary association (trimer) as revealed by the crystal structure of PhThiK.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The inner ear originates from an ectodermal thickening called the otic placode. The otic placode invaginates and closes to an otic vesicle, the otocyst. The otocyst epithelium undergoes morphogenetic changes and cell differentiation, leading to the formation of the labyrinth-like mature inner ear. Epithelial-mesenchymal interactions control inner ear morphogenesis, but the modes and molecules are largely unresolved. The expressions of negative cell cycle regulators in the epithelium of the early-developing inner ear have also not been elucidated. The mature inner ear comprises the hearing (cochlea) and balance (vestibular) organs that contain the nonsensory and sensory cells. In mammals, the inner ear sensory cells, called hair cells, exit the cell cycle during embryogenesis and are mitotically quiescent during late-embryonic differentiation stages and postnatally. The mechanisms that maintain this hair cell quiescense are largely unresolved. In this work I examined 1) the epithelial-mesenchymal interactions involved in inner ear morphogenesis, 2) expression of negative cell cycle regulators in the epithelium of the early developing inner ear and 3) the molecular mechanisms that maintain the postmitotic state of inner ear sensory cells. We observed that during otocyst stages, epithelial fibroblast growth factor 9 (Fgf9) communicates with the surrounding mesenchyme, where its receptors are expressed. Fgf9 inactivation leads to reduced proliferation of the surrounding vestibular mesenchyme and to the absence of semicircular canals. Semicircular canal development is blocked, since fusion plates do not form. These results show that the mesenchyme directs fusion plate formation and give direct evidence for the existence of reciprocal epithelial-mesenchymal interactions in the developing inner ear. Cyclin-dependent kinase inhibitors (CKIs) are negative regulators of proliferation. We show that the members of the Cip/Kip family of CKIs (p21Cip1, p27Kip1 and p57Kip2) are expressed in the early-developing inner ear. Our expression data suggest that CKIs divide the otic epithelium into proliferative and nonproliferative compartments that may underlie shaping of the otocyst. At later stages, CKIs regulate proliferation of the vestibular appendages, and this may regulate their continual growth. In addition to restricting proliferation, CKIs may play a role in regional differentiation of various epithelial cells. Differentiating and adult inner ear hair cells are postmitotic and do not proliferate in response to serum or mitogenic growth factors. In our study, we show that this is the result of the activity of negative cell cycle regulators. Based on expression profiles, we first focused on the retinoblastoma (Rb) gene, which functions downstream of the CKIs. Analysis of the inner ear phenotype of Rb mutant mice show, that the retinoblastoma protein regulates the postmitotic state of hair cells. Rb inactivation leads to hyperplasia of vestibular and cochlear sensory epithelia that is a result of abnormal cell cycle entry of differentiated hair cells and of delayed cell cycle exit of the hair cell precursor cells. In addition, we show that p21Cip1 and p19Ink4d cooperate in maintaining the postmitotic state of postnatal auditory hair cells. Whereas inactivation of p19Ink4d alone leads to low-level S-phase entry (Chen et al., 2003) and p21Cip1 null mutant mice have a normal inner ear phenotype, codeletion of p19Ink4d and p21Cip1 triggers high-level S-phase entry of auditory hair cells during early postnatal life, which leads to supernumerary hair cells. The ectopic hair cells undergo apoptosis in all of the mutant mice studied, DNA damage being the immediate cause of this death. These findings demonstrate that the maintenance of the postmitotic state of hair cells is regulated by Rb and several CKIs, and that these cell cycle regulators are critical for the lifelong survival of hair cells. These data have implications for the future design of therapies to induce hair cell regrowth.