843 resultados para Cortical dysplasia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies of areas V1 and MT in the visual cortex show that exposure to a stimulus can change the contrast sensitivity of cells and shift their peak sensitivity to a new orientation or movement direction. In MT, these shifts can correctly predict illusory changes - visual aftereffects - in movement direction, but in V1, they are more difficult to interpret.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The roots of the concept of cortical columns stretch far back into the history of neuroscience. The impulse to compartmentalise the cortex into functional units can be seen at work in the phrenology of the beginning of the nineteenth century. At the beginning of the next century Korbinian Brodmann and several others published treatises on cortical architectonics. Later, in the middle of that century, Lorente de No writes of chains of ‘reverberatory’ neurons orthogonal to the pial surface of the cortex and called them ‘elementary units of cortical activity’. This is the first hint that a columnar organisation might exist. With the advent of microelectrode recording first Vernon Mountcastle (1957) and then David Hubel and Torsten Wiesel provided evidence consistent with the idea that columns might constitute units of physiological activity. This idea was backed up in the 1970s by clever histochemical techniques and culminated in Hubel and Wiesel’s well-known ‘ice-cube’ model of the cortex and Szentogathai’s brilliant iconography. The cortical column can thus be seen as the terminus ad quem of several great lines of neuroscientific research: currents originating in phrenology and passing through cytoarchitectonics; currents originating in neurocytology and passing through Lorente de No. Famously, Huxley noted the tragedy of a beautiful hypothesis destroyed by an ugly fact. Famously, too, human visual perception is orientated toward seeing edges and demarcations when, perhaps, they are not there. Recently the concept of cortical columns has come in for the same radical criticism that undermined the architectonics of the early part of the twentieth century. Does history repeat itself? This paper reviews this history and asks the question.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We contend that powerful group studies can be conducted using magnetoencephalography (MEG), which can provide useful insights into the approximate distribution of the neural activity detected with MEG without requiring magnetic resonance imaging (MRI) for each participant. Instead, a participant's MRI is approximated with one chosen as a best match on the basis of the scalp surface from a database of available MRIs. Because large inter-individual variability in sulcal and gyral patterns is an inherent source of blurring in studies using grouped functional activity, the additional error introduced by this approximation procedure has little effect on the group results, and offers a sufficiently close approximation to that of the participants to yield a good indication of the true distribution of the grouped neural activity. T1-weighted MRIs of 28 adults were acquired in a variety of MR systems. An artificial functional image was prepared for each person in which eight 5 × 5 × 5 mm regions of brain activation were simulated. Spatial normalisation was applied to each image using transformations calculated using SPM99 with (1) the participant's actual MRI, and (2) the best matched MRI substituted from those of the other 27 participants. The distribution of distances between the locations of points using real and substituted MRIs had a modal value of 6 mm with 90% of cases falling below 12.5 mm. The effects of this -approach on real grouped SAM source imaging of MEG data in a verbal fluency task are also shown. The distribution of MEG activity in the estimated average response is very similar to that produced when using the real MRIs. © 2003 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Development of the cerebral cortex is influenced by sensory experience during distinct phases of postnatal development known as critical periods. Disruption of experience during a critical period produces neurons that lack specificity for particular stimulus features, such as location in the somatosensory system. Synaptic plasticity is the agent by which sensory experience affects cortical development. Here, we describe, in mice, a developmental critical period that affects plasticity itself. Transient neonatal disruption of signaling via the C-terminal domain of "disrupted in schizophrenia 1" (DISC1)-a molecule implicated in psychiatric disorders-resulted in a lack of long-term potentiation (LTP) (persistent strengthening of synapses) and experience-dependent potentiation in adulthood. Long-term depression (LTD) (selective weakening of specific sets of synapses) and reversal of LTD were present, although impaired, in adolescence and absent in adulthood. These changes may form the basis for the cognitive deficits associated with mutations in DISC1 and the delayed onset of a range of psychiatric symptoms in late adolescence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clustering of ballooned neurons (BN) and tau positive neurons with inclusion bodies (tau+ neurons) was studied in the upper and lower laminae of the frontal, parietal and temporal cortex in 12 patients with corticobasal degeneration (CBD). In a significant proportion of brain areas examined, BN and tau+ neurons exhibited clustering with a regular distribution of clusters parallel to the pia mater. A regular pattern of clustering of BN and tau+ neurons was observed equally frequently in all cortical areas examined and in the upper and lower laminae. No significant correlations were observed between the cluster sizes of BN or tau+ neurons in the upper compared with the lower cortex or between the cluster sizes of BN and tau+ neurons. The results suggest that BN and tau+ neurons in CBD exhibit the same type of spatial pattern as lesions in Alzheimer's disease, Lewy body dementia and Pick's disease. The regular periodicity of the cerebral cortical lesions is consistent with the degeneration of the cortico-cortical projections in CBD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spatial pattern of cellular neurofibrillary tangles (NFT) was studied in the supra- and infragranular layers of various cortical regions in cases of Alzheimer's disease (AD). The objective was to test the hypothesis that NFT formation was associated with the cells of origin of specific cortico-cortical projections. The novel feature of the study was that pattern analysis enabled the dimension and spacing of NFT clusters along the cortical ribbon to be estimated. In the majority of brain regions studied, NFT occurred in clusters of neurons which were regularly spaced along the cortical strip. This pattern is consistent with the predicted distribution of the cells of origin of specific cortico-cortico projections. Mean NFT cluster size varied from 250 to > 12800 microns in different cortical tissues suggesting either variation in the size of the cell clusters or a dynamic process in the development of NFT in relation to these cell clusters. The formation of NFT in cell clusters which may give rise to the feed-forward and feed-back cortico-cortical projections suggests a possible route of spread of NFT pathology in AD between cortical regions and from the cortex to subcortical areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The frequency of morphological abnormalities in neuronal perikarya which were in contact with diffuse beta-amyloid (Abeta) deposits in patients with Alzheimer’s disease (AD) was compared with neurons located adjacent to the deposits. Morphological abnormalities were also studied in elderly, non-demented (ND) cases with and without diffuse Abeta deposits. In AD and ND cases with Abeta deposits, an increased proportion of neurons in contact with diffuse deposits exhibited at least one abnormality compared with neurons located adjacent to the deposits. Neurons in contact with diffuse deposits exhibited a greater frequency of abnormalities of shape, nuclei, nissl substance and had a higher frequency of cytoplasmic vacuoles compared with adjacent neurons. A greater frequency of abnormalities of shape, nissl substance and in the frequency of displaced nuclei were also observed in neurons adjacent to diffuse deposits in AD compared with ND cases. With the exception of absent nuclei, morphological abnormalities adjacent to diffuse deposits in ND cases were similar to those of ND cases without Abeta deposits. These results suggest that neuronal degeneration is associated with the earliest stages of Abeta deposit formation and is not specifically related to the formation of mature senile plaques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The laminar distribution of Lewy bodies (LB) and neurofibrillary tangles (NFT) was studied in twelve cases of dementia with Lewy bodies (DLB). LB density was maximal in the lower cortex in 59% of cortical areas, in the upper cortex in 31% of areas while densities were similar in the upper and lower cortex in 9% of areas. The distribution of LB was either unimodal with a lower cortical peak, or bimodal with density peaks in the upper and lower cortex. The density of NFT was maximal in the upper cortex in all tissues. The distributions of LB and NFT were similar in temporal and frontal cortex and in cases with and without Alzheimer’s disease (AD). The vertical densities of LB and NFT were not significantly correlated. LB formation may affect the feedback cortico-cortical pathway and the efferent cortical projections whereas NFT formation may affect the feedforward cortico-cortical pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The laminar distribution of senile plaques (SP) and neurofibrillary tangles (NFT) was studied in areas B17 and B18 of the visual cortex in 18 cases of Alzheimer’s disease which varied in disease onset and duration. The objective was to test the hypothesis that SP and NFT could spread via either the feedforward or feedback short cortico-cortical projections. In area B17, the mean density of SP and NFT reached a maximum in lamina III and in laminae II and III respectively. In B18, mean SP density was maximal in laminae III and IV and NFT density in laminae II and III. No significant correlations were observed in any cortical lamina between the density of SP and patient age. However, the density of NFT in laminae III, IV and VI in B18 was negatively correlated with patient age. In addition, in B18, the density of SP in lamina II and lamina V was negatively correlated with disease duration and disease onset respectively. Although these results suggest that SP and NFT might spread between B17 and B18 via the feedforward short cortico-cortical projections, it is also possible that the longer cortico-cortical and cortico-subcortical connections may be involved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to determine the degree of white matter pathology in the cerebral cortex in cases of variant Creutzfeldt-Jakob disease (vCJD) and to study the relationships between the white matter and grey matter pathologies. Hence, the pathological changes in cortical white matter were studied in individual gyri of the frontal, parietal, occipital, and temporal cortex in eleven cases of vCJD. Vacuolation (‘spongiform change’), deposition of the disease form of prion protein (PrPsc) in the form of discrete PrP deposits, and gliosis were observed in the white matter of virtually all cortical regions studied. Mean density of the vacuoles in the white matter was greater in the parietal lobe compared with the frontal, occipital, and temporal lobes but there were fewer glial cells in the occipital lobe compared with the other cortical regions. In the white matter of the frontal cortex, vacuole density was negatively correlated with the density of both glial cell nuclei and the PrP deposits. In addition, the densities of glial cells and PrP deposits were positively correlated in the frontal and parietal cortex. In the white matter of the frontal cortex and inferior temporal gyrus, there was a negative correlation between the densities of the vacuoles and the number of surviving neurons in laminae V/VI of the adjacent grey matter. In addition, in the frontal cortex, vacuole density in the white matter was negatively correlated with the density of the diffuse PrP deposits in laminae II/III and V/VI of the adjacent grey matter. The densities of PrP deposits in the white matter of the frontal cortex were positively correlated with the density of the diffuse PrP deposits in laminae II/III and V/V1 and with the number of surviving neurons in laminae V/V1. The data suggest that in the white matter in vCJD, gliosis is associated with the development of PrP deposits while the appearance of the vacuolation is a later development. In addition, neuronal loss and PrP deposition in the lower cortical laminae of the grey matter may be a consequence of axonal degeneration within the white matter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To quantify cortical white matter pathology in variant Creutzfeldt-Jakob disease (vCJD) and to correlate white and grey matter pathologies. Methods: Pathological changes were studied in immunolabeled sections of the frontal, parietal, occipital, and temporal cortex of eleven cases of vCJD. Results: Vacuolation ("spongiform change"), deposition of the disease form of prion protein (PrPsc), and a glial cell reaction were observed in the white matter. The density of the vacuoles was greatest in the white matter of the occipital cortex and glial cell density in the inferior temporal gyrus (ITG). Florid-type PrPsc deposits were present in approximately 50% of white matter regions studied. In the white matter of the frontal cortex (FC), vacuole density was negatively correlated with the densities of both glial cell nuclei and PrPsc deposits. In addition, in the frontal and parietal cortices the densities of glial cells and PrPsc deposits were positively correlated. In the FC and ITG, there was a negative correlation between the densities of the vacuoles in the white matter and the number of surviving neurons in laminae V/VI of the adjacent grey matter. In the FC, vacuole density in the white matter was negatively correlated with the density of the diffuse PrPsc deposits in laminae II/III and V/VI of the adjacent grey matter. In addition, the densities of PrPsc deposits in the white matter of the FC were positively correlated with the density of the diffuse PrPsc deposits in laminae II/III and V/VI and with the number of surviving neurons in laminae V/VI. Conclusion: The data suggest significant degeneration of cortical white matter in vCJD; the vacuolation being related to neuronal loss in the lower cortical laminae of adjacent grey matter, PrPsc deposits the result of leakage from damaged axons, and gliosis a reaction to these changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite the multiplicity of approaches and techniques so far applied for identifying the pathophysiological mechanisms of photosensitive epilepsy, a generally agreed explanation of the phenomenon is still lacking. The present thesis reports on three interlinked original experimental studies conducted to explore the neurophysiological correlates and the phatophysiological mechanism of photosensitive epilepsy. In the first study I assessed the role of the habituation of the Visual Evoked Response test as a possible biomarker of epileptic visual sensitivity. The two subsequent studies were designed to address specific research questions emerging from the results of the first study. The findings of the three intertwined studies performed provide experimental evidence that photosensitivity is associated with changes in a number of electrophysiological measures suggestive of altered balance between excitatory and inhibitory cortical processes. Although a strong clinical association does exist between specific epileptic syndromes and visual sensitivity, results from this research indicate that photosensitivity trait seems to be the expression of specific pathophysiological mechanisms quite distinct from the “epileptic” phenotype. The habituation of Pattern Reversal Visual Evoked Potential (PR-VEP) appears as a reliable candidate endo-phenotype of visual sensitivity. Interpreting the findings of this study in the context of the broader literature on visual habituation we can hypothesise the existence of a shared neurophysiological background between photosensitive epilepsy and migraine. Future studies to elucidate the relationship between the proposed indices of cortical excitability and specific polymorphisms of excitatroy and inhibitory neurotransmission will need to be conducted to assess their potential role as biomarkers of photosensitivity.