993 resultados para Contaminated Water


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seven pyrethroids (bifenthrin, fenpropathrin, k-cyhalothrin, permethrin, a-cypermethrin, fenvalerate, and deltamethrin) were extracted from water using C18 solid-phase extraction disks, followed by gas chromatography with an electron capture detector (GC-ECD) analysis. The limits of detection in water samples ranged from 0.5 ng L-1 (fenpropathrin) to 110 ng L- 1 (permethrin), applying the calibration graph. The effects of different numbers of (re)utilizations of the same disks (up to four times with several concentrations) on the recoveries of the pyrethroids were considered. The recoveries were all between 70 and 120% after four utilizations of the same disk. There was no difference between these recoveries at a confidence level of 95%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we isolated from soil and characterized several bacterial strains capable of either resisting high concentrations of heavy metals (Cd2+ or Hg2+ or Pb2+) or degrading the common soil and groundwater pollutants MTBE (methyl-tertbutyl ether) or TCE (trichloroethylene). We then used soil microcosms exposed to MTBE (50 mg/l) or TCE (50 mg/l) in the presence of one heavy metal (Cd 10 ppm or Hg 5 ppm or Pb 50 or 100 ppm) and two bacterial isolates at a time, a degrader plus a metalresistant strain. Some of these two-membered consortia showed degradation efficiencies well higher (49–182% higher) than those expected under the conditions employed, demonstrating the occurrence of a synergetic relationship between the strains used. Our results show the efficacy of the dual augmentation strategy for MTBE and TCE bioremediation in the presence of heavy metals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The construction industry keeps on demanding huge quantities of natural resources, mainly minerals for mortars and concrete production. The depletion of many quarries and environmental concerns about reducing the dumping of construction and demolition waste in quarries have led to an increase in the procuring and use of recycled aggregates from this type of waste. If they are to be incorporated in concrete and mortars it is essential to know their properties to guarantee the adequate performance of the end products, in both mechanical and durability-related terms. Existing regulated tests were developed for natural aggregates, however, and several problems arise when they are applied to recycled aggregates, especially fine recycled aggregates (FRA). This paper describes the main problems encountered with these tests and proposes an alternative method to determine the density and water absorption of FRA that removes them. The use of sodium hexametaphosphate solutions in the water absorption test has proven to improve its efficiency, minimizing cohesion between particles and helping to release entrained air.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this paper is to develop models for experimental open-channel water delivery systems and assess the use of three data-driven modeling tools toward that end. Water delivery canals are nonlinear dynamical systems and thus should be modeled to meet given operational requirements while capturing all relevant dynamics, including transport delays. Typically, the derivation of first principle models for open-channel systems is based on the use of Saint-Venant equations for shallow water, which is a time-consuming task and demands for specific expertise. The present paper proposes and assesses the use of three data-driven modeling tools: artificial neural networks, composite local linear models and fuzzy systems. The canal from Hydraulics and Canal Control Nucleus (A parts per thousand vora University, Portugal) will be used as a benchmark: The models are identified using data collected from the experimental facility, and then their performances are assessed based on suitable validation criterion. The performance of all models is compared among each other and against the experimental data to show the effectiveness of such tools to capture all significant dynamics within the canal system and, therefore, provide accurate nonlinear models that can be used for simulation or control. The models are available upon request to the authors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main objective of this research is to exploit the possibility of using an ex situ solvent extraction technique for the remediation of soils contaminated with semi-volatile petroleum hydrocarbons. The composition of the organic phase was chosen in order to form a single phase mixture with an aqueous phase and simultaneously not being disturbed (forming stable emulsions) by the soil particles hauling the contaminants. It should also permit a regeneration of the organic solvent phase. As first, we studied the miscibility domain of the chosen ternary systems constituted by ethyl acetate–acetone–water. This system proved to satisfy the previous requirements allowing for the formation of a single liquid phase mixture within a large spectrum of compositions, and also allowing for an intimate contact with the soil. Contaminants in the diesel range within different functional groups were selected: xylene, naphthalene and hexadecane. The analytical control was done by gas chromatography with FID detector. The kinetics of the extractions proved to be fast, leading to equilibrium after 10 min. The effect of the solid–liquid ratio on the extraction efficiency was studied. Lower S/L ratios (1:8, w/v) proved to be more efficient, reaching recoveries in the order of 95%. The option of extraction in multiple contacts did not improve the recovery in relation to a single contact. The solvent can be regenerated by distillation with a loss around 10%. The contaminants are not evaporated and they remain in the non-volatile phase. The global results show that the ex situ solvent extraction is technically a feasible option for the remediation of semi-volatile aromatic, polyaromatic and linear hydrocarbons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infiltration galleries are among the oldest known means used for small public water fountains. Owing to its ancestral origin they are usually associated with high quality water. Thirty-one compounds, including pesticides and estrogens from different chemical families, were analysed in waters from infiltration galleries collected in Alto Douro Demarcated Wine region (North of Portugal). A total of twelve compounds were detected in the water samples. Nine of these compounds are described as presenting evidence or potential evidence of interfering with the hormone system of humans and wildlife. Although concentrations of the target analytes were relatively low, many of them below their limit of quantification, four compounds were above quantification limit and two of them even above the legal limit of 0.1 lg/L: dimethoate (30.38 ng/L), folpet (64.35 ng/L), terbuthylazine-desethyl (22.28 to 292.36 ng/L) and terbuthylazine (22.49 to 369.33 ng/L).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, a method for the electrochemical quantification of the total antioxidant capacity (TAC) in beverages was developed. The method is based on the oxidative damage to the purine bases, adenine or guanine, that are immobilized on a glassy carbon electrode (GCE) surface. The oxidative lesions on the DNA bases were promoted by the sulfate radical generated by the persulfate/iron(II) system. The presence of antioxidants on the reactive system promoted the protection of the DNA bases immobilized on the GCE by scavenging the sulfate radical. Square-wave voltammetry (SWV) was the electrochemical technique used to perform this study. The efficiencies of five antioxidants (ascorbic acid, gallic acid, caffeic acid, coumaric acid and resveratrol) in scavenging the sulfate radical and, therefore, their ability to protect the purine bases immobilized on the GCE were investigated. These results demonstrated that the purine-based biosensor is suitable for the rapid assessment of the TAC in flavors and flavored water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work reports the study of the combination of soil vapor extraction (SVE) with bioremediation (BR) to remediate soils contaminated with benzene. Soils contaminated with benzene with different water and natural organic matter contents were studied. The main goals were: (i) evaluate the performance of SVE regarding the remediation time and the process efficiency; (ii) study the combination of both technologies in order to identify the best option capable to achieve the legal clean up goals; and (iii) evaluate the influence of soil water content (SWC) and natural organic matter (NOM) on SVE and BR. The remediation experiments performed in soils contaminated with benzene allowed concluding that: (i) SVE presented (a) efficiencies above 92% for sandy soils and above 78% for humic soils; (b) and remediation times from 2 to 45 h, depending on the soil; (ii) BR showed to be an efficient technology to complement SVE; (iii) (a) SWC showed minimum impact on SVE when high airflow rates were used and led to higher remediation times for lower flow rates; (b) NOM as source of microorganisms and nutrients enhanced BR but hindered the SVE due the limitation on the mass transfer of benzene from the soil to the gas phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amulti-residue methodology based on a solid phase extraction followed by gas chromatography–tandem mass spectrometry was developed for trace analysis of 32 compounds in water matrices, including estrogens and several pesticides from different chemical families, some of them with endocrine disrupting properties. Matrix standard calibration solutions were prepared by adding known amounts of the analytes to a residue-free sample to compensate matrix-induced chromatographic response enhancement observed for certain pesticides. Validation was done mainly according to the International Conference on Harmonisation recommendations, as well as some European and American validation guidelines with specifications for pesticides analysis and/or GC–MS methodology. As the assumption of homoscedasticity was not met for analytical data, weighted least squares linear regression procedure was applied as a simple and effective way to counteract the greater influence of the greater concentrations on the fitted regression line, improving accuracy at the lower end of the calibration curve. The method was considered validated for 31 compounds after consistent evaluation of the key analytical parameters: specificity, linearity, limit of detection and quantification, range, precision, accuracy, extraction efficiency, stability and robustness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A glutathione-S-transferase (GST)based biosensor was developed to quantify the thiocarbamate herbicide molinate in environmental water.The biosensor construction was based on GST immobilization onto a glassy carbon electrode via aminosilane–glutaraldehyde covalent attachment. The principle supporting the use of this biosensor consists of the GST inhibition process promoted by molinate. Differential pulse voltammetry was used to obtain a calibration curve for molinate concentration, ranging from 0.19 to 7.9 mgL -1 and presenting a detection limit of 0.064 mgL- 1. The developed biosensor is stable,and reusable during 15 days.The GST-based biosensor was successfully applied to quantify molinate in rice paddy field floodwater samples. The results achieved with the developed biosensor were in accordance with those obtained by high performance liquid chromatography. The proposed device is suitable for screening environmental water analysis and, since no sample preparation is required, it can be used in situ and in real-time measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Paracetamol is among the most worldwide consumed pharmaceuticals. Although its occurrence in the environment is well documented, data about the presence of its metabolites and transformation products is very scarce. The present work describes the development of an analytical method for the simultaneous determination of paracetamol, its principal metabolite (paracetamol-glucuronide) and its main transformation product (p-aminophenol) based on solid phase extraction (SPE) and high performance liquid chromatography coupled to diode array detection (HPLC-DAD). The method was applied to analysis of river waters, showing to be suitable to be used in routine analysis. Different SPE sorbents were compared and the use of two Oasis WAX cartridges in tandem proved to be the most adequate approach for sample clean up and pre-concentration. Under optimized conditions, limits of detection in the range 40–67 ng/L were obtained, as well as mean recoveries between 60 and 110% with relative standard deviations (RSD) below 6%. Finally, the developed SPE-HPLC/DAD method was successfully applied to the analysis of the selected compounds in samples from seven rivers located in the north of Portugal. Nevertheless all the compounds were detected, it was the first time that paracetamol-glucuronide was found in river water at concentrations up to 3.57 μg/L.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zero-valent iron nanoparticles (nZVIs) are often used in environmental remediation. Their high surface area that is associated with their high reactivity makes them an excellent agent capable of transforming/degrading contaminants in soils and waters. Due to the recent development of green methods for the production of nZVIs, the use of this material became even more attractive. However, the knowledge of its capacity to degrade distinct types of contaminants is still scarce. The present work describes the study of the application of green nZVIs to the remediation of soils contaminated with a common anti-inflammatory drug, ibuprofen. The main objectives of this work were to produce nZVIs using extracts of grape marc, black tea and vine leaves, to verify the degradation of ibuprofen in aqueous solutions by the nZVIs, to study the remediation process of a sandy soil contaminated with ibuprofen using the nZVIs, and to compare the experiments with other common chemical oxidants. The produced nZVIs had nanometric sizes and were able to degrade ibuprofen (54 to 66% of the initial amount) in aqueous solutions. Similar remediation efficiencies were obtained in sandy soils. In this case the remediation could be enhanced (achieving degradation efficiencies above 95%) through the complementation of the process with a catalyzed nZVI Fenton-like reaction. These results indicate that this remediation technology represents a good alternative to traditional and more aggressive technologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the last few years, there has been a growing concern about the presence of pharmaceuticals in the environment. The main objective of this study was to develop and validate an SPE method using surface response methodology for the determination of ibuprofen in different types of water samples. The influence of sample pH and sample volume on the ibuprofen recovery was studied. The effect of each studied independent variable is pronounced on the dependent variable (ibuprofen recovery). Good selectivity, extraction efficiency, and precision were achieved using 600 mL of sample volume with the pH adjusted to 2.2. LC with fluorescence detection was employed. The optimized method was applied to 20 water samples from the North and South of Portugal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation elaborated for the partial fulfilment of the requirements of the Master Degree in Civil Engineering in the Speciality Area of Hydarulics

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The initial goal of this work was the development of a supported liquid membrane (SLM) bioreactor for the remediation of vaccine production effluents contaminated with a highly toxic organomercurial – thiomersal. Therefore, two main aspects were focused on: 1) the development of a stable supported liquid membrane – using room temperature ionic liquids (RTILs) – for the selective transport of thiomersal from the wastewater to a biological compartment, 2) study of the biodegradation kinetics of thiomersal to metallic mercury by a Pseudomonas putida strain. The first part of the work focused on the evaluation of the physicochemical properties of ionic liquids and on the SLMs’ operational stability. The results obtained showed that, although it is possible to obtain a SLM with a high stability, water possesses nonnegligible solubility in the RTILs studied. The formation of water clusters inside the hydrophobic ionic liquid was identified and found to regulate the transport of water and small ions. In practical terms, this meant that, although it was possible to transport thiomersal from the vaccine effluent to the biological compartment, complete isolation of the microbial culture could not be guaranteed and the membrane might ultimately be permeable to other species present in the aqueous vaccine wastewater. It was therefore decided not to operate the initially targeted integrated system but, instead, the biological system by itself. Additionally, attention was given to the development of a thorough understanding of the transport mechanisms involved in the solubilisation and transport of water through supported liquid membranes with RTILs as well as to the evaluation of the effect of water uptake by the SLM in the transport mechanisms of water-soluble solutes and its effect on SLM performance. The results obtained highlighted the determinant role played by water – solubilised inside the ionic liquids – on the transport mechanism. It became clear that the transport mechanism of water and water-soluble solutes through SLMs with [CnMIM][PF6] RTILs was regulated by the dynamics of water clusters inside the RTIL, rather than by molecular diffusion through the bulk of the ionic liquid. Although the stability tests vi performed showed that there were no significant losses of organic phase from the membrane pores, the formation of water clusters inside the ionic liquid, which constitute new, non-selective environments for solute transport, leads to a clear deterioration of SLM performance and selectivity. Nevertheless, electrical impedance spectroscopy characterisation of the SLMs showed that the formation of water clusters did not seem to have a detrimental effect on the SLMs’ electrical characteristics and highlighted the potential of using this type of membranes in electrochemical applications with low resistance requirements. The second part of the work studied the kinetics of thiomersal degradation by a pure culture of P. putida spi3 strain, in batch culture and using a synthe tic wastewater. A continuous ly stirred tank reactor fed with the synthetic wastewater was also operated and the bioreactor’s performance and robustness, when exposed to thiomersal shock loads, were evaluated. Finally, a bioreactor for the biological treatment of a real va ccine production effluent was set up and operated at different dilution rates. Thus it was possible to treat a real thiomersal-contaminated effluent, lowering the outlet mercury concentration to values below the European limit for mercury effluent discharges.