813 resultados para Constraint based modelling
Resumo:
The impact of projected climate change on wine production was analysed for the Demarcated Region of Douro, Portugal. A statistical grapevine yield model (GYM) was developed using climate parameters as predictors. Statistically significant correlations were identified between annual yield and monthly mean temperatures and monthly precipitation totals during the growing cycle. These atmospheric factors control grapevine yield in the region, with the GYM explaining 50.4% of the total variance in the yield time series in recent decades. Anomalously high March rainfall (during budburst, shoot and inflorescence development) favours yield, as well as anomalously high temperatures and low precipitation amounts in May and June (May: flowering and June: berry development). The GYM was applied to a regional climate model output, which was shown to realistically reproduce the GYM predictors. Finally, using ensemble simulations under the A1B emission scenario, projections for GYM-derived yield in the Douro Region, and for the whole of the twenty-first century, were analysed. A slight upward trend in yield is projected to occur until about 2050, followed by a steep and continuous increase until the end of the twenty-first century, when yield is projected to be about 800 kg/ha above current values. While this estimate is based on meteorological parameters alone, changes due to elevated CO2 may further enhance this effect. In spite of the associated uncertainties, it can be stated that projected climate change may significantly benefit wine yield in the Douro Valley.
Assessment of the Wind Gust Estimate Method in mesoscale modelling of storm events over West Germany
Resumo:
A physically based gust parameterisation is added to the atmospheric mesoscale model FOOT3DK to estimate wind gusts associated with storms over West Germany. The gust parameterisation follows the Wind Gust Estimate (WGE) method and its functionality is verified in this study. The method assumes that gusts occurring at the surface are induced by turbulent eddies in the planetary boundary layer, deflecting air parcels from higher levels down to the surface under suitable conditions. Model simulations are performed with horizontal resolutions of 20 km and 5 km. Ten historical storm events of different characteristics and intensities are chosen in order to include a wide range of typical storms affecting Central Europe. All simulated storms occurred between 1990 and 1998. The accuracy of the method is assessed objectively by validating the simulated wind gusts against data from 16 synoptic stations by means of “quality parameters”. Concerning these parameters, the temporal and spatial evolution of the simulated gusts is well reproduced. Simulated values for low altitude stations agree particularly well with the measured gusts. For orographically exposed locations, the gust speeds are partly underestimated. The absolute maximum gusts lie in most cases within the bounding interval given by the WGE method. Focussing on individual storms, the performance of the method is better for intense and large storms than for weaker ones. Particularly for weaker storms, the gusts are typically overestimated. The results for the sample of ten storms document that the method is generally applicable with the mesoscale model FOOT3DK for mid-latitude winter storms, even in areas with complex orography.
Resumo:
We compare future changes in global mean temperature in response to different future scenarios which, for the first time, arise from emission-driven rather than concentration-driven perturbed parameter ensemble of a global climate model (GCM). These new GCM simulations sample uncertainties in atmospheric feedbacks, land carbon cycle, ocean physics and aerosol sulphur cycle processes. We find broader ranges of projected temperature responses arising when considering emission rather than concentration-driven simulations (with 10–90th percentile ranges of 1.7 K for the aggressive mitigation scenario, up to 3.9 K for the high-end, business as usual scenario). A small minority of simulations resulting from combinations of strong atmospheric feedbacks and carbon cycle responses show temperature increases in excess of 9 K (RCP8.5) and even under aggressive mitigation (RCP2.6) temperatures in excess of 4 K. While the simulations point to much larger temperature ranges for emission-driven experiments, they do not change existing expectations (based on previous concentration-driven experiments) on the timescales over which different sources of uncertainty are important. The new simulations sample a range of future atmospheric concentrations for each emission scenario. Both in the case of SRES A1B and the Representative Concentration Pathways (RCPs), the concentration scenarios used to drive GCM ensembles, lies towards the lower end of our simulated distribution. This design decision (a legacy of previous assessments) is likely to lead concentration-driven experiments to under-sample strong feedback responses in future projections. Our ensemble of emission-driven simulations span the global temperature response of the CMIP5 emission-driven simulations, except at the low end. Combinations of low climate sensitivity and low carbon cycle feedbacks lead to a number of CMIP5 responses to lie below our ensemble range. The ensemble simulates a number of high-end responses which lie above the CMIP5 carbon cycle range. These high-end simulations can be linked to sampling a number of stronger carbon cycle feedbacks and to sampling climate sensitivities above 4.5 K. This latter aspect highlights the priority in identifying real-world climate-sensitivity constraints which, if achieved, would lead to reductions on the upper bound of projected global mean temperature change. The ensembles of simulations presented here provides a framework to explore relationships between present-day observables and future changes, while the large spread of future-projected changes highlights the ongoing need for such work.
Resumo:
There exists a well-developed body of theory based on quasi-geostrophic (QG) dynamics that is central to our present understanding of large-scale atmospheric and oceanic dynamics. An important question is the extent to which this body of theory may generalize to more accurate dynamical models. As a first step in this process, we here generalize a set of theoretical results, concerning the evolution of disturbances to prescribed basic states, to semi-geostrophic (SG) dynamics. SG dynamics, like QG dynamics, is a Hamiltonian balanced model whose evolution is described by the material conservation of potential vorticity, together with an invertibility principle relating the potential vorticity to the advecting fields. SG dynamics has features that make it a good prototype for balanced models that are more accurate than QG dynamics. In the first part of this two-part study, we derive a pseudomomentum invariant for the SG equations, and use it to obtain: (i) linear and nonlinear generalized Charney–Stern theorems for disturbances to parallel flows; (ii) a finite-amplitude local conservation law for the invariant, obeying the group-velocity property in the WKB limit; and (iii) a wave-mean-flow interaction theorem consisting of generalized Eliassen–Palm flux diagnostics, an elliptic equation for the stream-function tendency, and a non-acceleration theorem. All these results are analogous to their QG forms. The pseudomomentum invariant – a conserved second-order disturbance quantity that is associated with zonal symmetry – is constructed using a variational principle in a similar manner to the QG calculations. Such an approach is possible when the equations of motion under the geostrophic momentum approximation are transformed to isentropic and geostrophic coordinates, in which the ageostrophic advection terms are no longer explicit. Symmetry-related wave-activity invariants such as the pseudomomentum then arise naturally from the Hamiltonian structure of the SG equations. We avoid use of the so-called ‘massless layer’ approach to the modelling of isentropic gradients at the lower boundary, preferring instead to incorporate explicitly those boundary contributions into the wave-activity and stability results. This makes the analogy with QG dynamics most transparent. This paper treats the f-plane Boussinesq form of SG dynamics, and its recent extension to β-plane, compressible flow by Magnusdottir & Schubert. In the limit of small Rossby number, the results reduce to their respective QG forms. Novel features particular to SG dynamics include apparently unnoticed lateral boundary stability criteria in (i), and the necessity of including additional zonal-mean eddy correlation terms besides the zonal-mean potential vorticity fluxes in the wave-mean-flow balance in (iii). In the companion paper, wave-activity conservation laws and stability theorems based on the SG form of the pseudoenergy are presented.
Resumo:
Business process modelling can help an organisation better understand and improve its business processes. Most business process modelling methods adopt a task- or activity-based approach to identifying business processes. Within our work, we use activity theory to categorise elements within organisations as being either human beings, activities or artefacts. Due to the direct relationship between these three elements, an artefact-oriented approach to organisation analysis emerges. Organisational semiotics highlights the ontological dependency between affordances within an organisation. We analyse the ontological dependency between organisational elements, and therefore produce the ontology chart for artefact-oriented business process modelling in order to clarify the relationship between the elements of an organisation. Furthermore, we adopt the techniques from semantic analysis and norm analysis, of organisational semiotics, to develop the artefact-oriented method for business process modelling. The proposed method provides a novel perspective for identifying and analysing business processes, as well as agents and artefacts, as the artefact-oriented perspective demonstrates the fundamental flow of an organisation. The modelling results enable an organisation to understand and model its processes from an artefact perspective, viewing an organisation as a network of artefacts. The information and practice captured and stored in artefact can also be shared and reused between organisations that produce similar artefacts.
Resumo:
Four CO2 concentration inversions and the Global Fire Emissions Database (GFED) versions 2.1 and 3 are used to provide benchmarks for climate-driven modeling of the global land-atmosphere CO2 flux and the contribution of wildfire to this flux. The Land surface Processes and exchanges (LPX) model is introduced. LPX is based on the Lund-Potsdam-Jena Spread and Intensity of FIRE (LPJ-SPITFIRE) model with amended fire probability calculations. LPX omits human ignition sources yet simulates many aspects of global fire adequately. It captures the major features of observed geographic pattern in burnt area and its seasonal timing and the unimodal relationship of burnt area to precipitation. It simulates features of geographic variation in the sign of the interannual correlations of burnt area with antecedent dryness and precipitation. It simulates well the interannual variability of the global total land-atmosphere CO2 flux. There are differences among the global burnt area time series from GFED2.1, GFED3 and LPX, but some features are common to all. GFED3 fire CO2 fluxes account for only about 1/3 of the variation in total CO2 flux during 1997–2005. This relationship appears to be dominated by the strong climatic dependence of deforestation fires. The relationship of LPX-modeled fire CO2 fluxes to total CO2 fluxes is weak. Observed and modeled total CO2 fluxes track the El Niño–Southern Oscillation (ENSO) closely; GFED3 burnt area and global fire CO2 flux track the ENSO much less so. The GFED3 fire CO2 flux-ENSO connection is most prominent for the El Niño of 1997–1998, which produced exceptional burning conditions in several regions, especially equatorial Asia. The sign of the observed relationship between ENSO and fire varies regionally, and LPX captures the broad features of this variation. These complexities underscore the need for process-based modeling to assess the consequences of global change for fire and its implications for the carbon cycle.
Resumo:
We have incorporated a semi-mechanistic isoprene emission module into the JULES land-surface scheme, as a first step towards a modelling tool that can be applied for studies of vegetation – atmospheric chemistry interactions, including chemistry-climate feedbacks. Here, we evaluate the coupled model against local above-canopy isoprene emission flux measurements from six flux tower sites as well as satellite-derived estimates of isoprene emission over tropical South America and east and south Asia. The model simulates diurnal variability well: correlation coefficients are significant (at the 95 % level) for all flux tower sites. The model reproduces day-to-day variability with significant correlations (at the 95 % confidence level) at four of the six flux tower sites. At the UMBS site, a complete set of seasonal observations is available for two years (2000 and 2002). The model reproduces the seasonal pattern of emission during 2002, but does less well in the year 2000. The model overestimates observed emissions at all sites, which is partially because it does not include isoprene loss through the canopy. Comparison with the satellite-derived isoprene-emission estimates suggests that the model simulates the main spatial patterns, seasonal and inter-annual variability over tropical regions. The model yields a global annual isoprene emission of 535 ± 9 TgC yr−1 during the 1990s, 78 % of which from forested areas.
Resumo:
We propose and demonstrate a fully probabilistic (Bayesian) approach to the detection of cloudy pixels in thermal infrared (TIR) imagery observed from satellite over oceans. Using this approach, we show how to exploit the prior information and the fast forward modelling capability that are typically available in the operational context to obtain improved cloud detection. The probability of clear sky for each pixel is estimated by applying Bayes' theorem, and we describe how to apply Bayes' theorem to this problem in general terms. Joint probability density functions (PDFs) of the observations in the TIR channels are needed; the PDFs for clear conditions are calculable from forward modelling and those for cloudy conditions have been obtained empirically. Using analysis fields from numerical weather prediction as prior information, we apply the approach to imagery representative of imagers on polar-orbiting platforms. In comparison with the established cloud-screening scheme, the new technique decreases both the rate of failure to detect cloud contamination and the false-alarm rate by one quarter. The rate of occurrence of cloud-screening-related errors of >1 K in area-averaged SSTs is reduced by 83%. Copyright © 2005 Royal Meteorological Society.
Resumo:
It is often assumed that humans generate a 3D reconstruction of the environment, either in egocentric or world-based coordinates, but the steps involved are unknown. Here, we propose two reconstruction-based models, evaluated using data from two tasks in immersive virtual reality. We model the observer’s prediction of landmark location based on standard photogrammetric methods and then combine location predictions to compute likelihood maps of navigation behaviour. In one model, each scene point is treated independently in the reconstruction; in the other, the pertinent variable is the spatial relationship between pairs of points. Participants viewed a simple environment from one location, were transported (virtually) to another part of the scene and were asked to navigate back. Error distributions varied substantially with changes in scene layout; we compared these directly with the likelihood maps to quantify the success of the models. We also measured error distributions when participants manipulated the location of a landmark to match the preceding interval, providing a direct test of the landmark-location stage of the navigation models. Models such as this, which start with scenes and end with a probabilistic prediction of behaviour, are likely to be increasingly useful for understanding 3D vision.
Resumo:
The Wetland and Wetland CH4 Intercomparison of Models Project (WETCHIMP) was created to evaluate our present ability to simulate large-scale wetland characteristics and corresponding methane (CH4) emissions. A multi-model comparison is essential to evaluate the key uncertainties in the mechanisms and parameters leading to methane emissions. Ten modelling groups joined WETCHIMP to run eight global and two regional models with a common experimental protocol using the same climate and atmospheric carbon dioxide (CO2) forcing datasets. We reported the main conclusions from the intercomparison effort in a companion paper (Melton et al., 2013). Here we provide technical details for the six experiments, which included an equilibrium, a transient, and an optimized run plus three sensitivity experiments (temperature, precipitation, and atmospheric CO2 concentration). The diversity of approaches used by the models is summarized through a series of conceptual figures, and is used to evaluate the wide range of wetland extent and CH4 fluxes predicted by the models in the equilibrium run. We discuss relationships among the various approaches and patterns in consistencies of these model predictions. Within this group of models, there are three broad classes of methods used to estimate wetland extent: prescribed based on wetland distribution maps, prognostic relationships between hydrological states based on satellite observations, and explicit hydrological mass balances. A larger variety of approaches was used to estimate the net CH4 fluxes from wetland systems. Even though modelling of wetland extent and CH4 emissions has progressed significantly over recent decades, large uncertainties still exist when estimating CH4 emissions: there is little consensus on model structure or complexity due to knowledge gaps, different aims of the models, and the range of temporal and spatial resolutions of the models.
Resumo:
Question: What are the correlations between the degree of drought stress and temperature, and the adoption of specific adaptive strategies by plants in the Mediterranean region? Location: 602 sites across the Mediterranean region. Method: We considered 12 plant morphological and phenological traits, and measured their abundance at the sites as trait scores obtained from pollen percentages. We conducted stepwise regression analyses of trait scores as a function of plant available moisture (α) and winter temperature (MTCO). Results: Patterns in the abundance for the plant traits we considered are clearly determined by α, MTCO or a combination of both. In addition, trends in leaf size, texture, thickness, pubescence and aromatic leaves and other plant level traits such as thorniness and aphylly, vary according to the life form (tree, shrub, forb), the leaf type (broad, needle) and phenology (evergreen, summer-green). Conclusions: Despite conducting this study based on pollen data we have identified ecologically plausible trends in the abundance of traits along climatic gradients. Plant traits other than the usual life form, leaf type and leaf phenology carry strong climatic signals. Generally, combinations of plant traits are more climatically diagnostic than individual traits. The qualitative and quantitative relationships between plant traits and climate parameters established here will help to provide an improved basis for modelling the impact of climate changes on vegetation and form a starting point for a global analysis of pollen-climate relationships
Resumo:
Aim This paper documents reconstructions of the vegetation patterns in Australia, Southeast Asia and the Pacific (SEAPAC region) in the mid-Holocene and at the last glacial maximum (LGM). Methods Vegetation patterns were reconstructed from pollen data using an objective biomization scheme based on plant functional types. The biomization scheme was first tested using 535 modern pollen samples from 377 sites, and then applied unchanged to fossil pollen samples dating to 6000 ± 500 or 18,000 ± 1000 14C yr bp. Results 1. Tests using surface pollen sample sites showed that the biomization scheme is capable of reproducing the modern broad-scale patterns of vegetation distribution. The north–south gradient in temperature, reflected in transitions from cool evergreen needleleaf forest in the extreme south through temperate rain forest or wet sclerophyll forest (WSFW) and into tropical forests, is well reconstructed. The transitions from xerophytic through sclerophyll woodlands and open forests to closed-canopy forests, which reflect the gradient in plant available moisture from the continental interior towards the coast, are reconstructed with less geographical precision but nevertheless the broad-scale pattern emerges. 2. Differences between the modern and mid-Holocene vegetation patterns in mainland Australia are comparatively small and reflect changes in moisture availability rather than temperature. In south-eastern Australia some sites show a shift towards more moisture-stressed vegetation in the mid-Holocene with xerophytic woods/scrub and temperate sclerophyll woodland and shrubland at sites characterized today by WSFW or warm-temperate rain forest (WTRF). However, sites in the Snowy Mountains, on the Southern Tablelands and east of the Great Dividing Range have more moisture-demanding vegetation in the mid-Holocene than today. South-western Australia was slightly drier than today. The single site in north-western Australia also shows conditions drier than today in the mid-Holocene. Changes in the tropics are also comparatively small, but the presence of WTRF and tropical deciduous broadleaf forest and woodland in the mid-Holocene, in sites occupied today by cool-temperate rain forest, indicate warmer conditions. 3. Expansion of xerophytic vegetation in the south and tropical deciduous broadleaf forest and woodland in the north indicate drier conditions across mainland Australia at the LGM. None of these changes are informative about the degree of cooling. However the evidence from the tropics, showing lowering of the treeline and forest belts, indicates that conditions were between 1 and 9 °C (depending on elevation) colder. The encroachment of tropical deciduous broadleaf forest and woodland into lowland evergreen broadleaf forest implies greater aridity. Main conclusions This study provides the first continental-scale reconstruction of mid-Holocene and LGM vegetation patterns from Australia, Southeast Asia and the Pacific (SEAPAC region) using an objective biomization scheme. These data will provide a benchmark for evaluation of palaeoclimate simulations within the framework of the Palaeoclimate Modelling Intercomparison Project.
Resumo:
A key step in many numerical schemes for time-dependent partial differential equations with moving boundaries is to rescale the problem to a fixed numerical mesh. An alternative approach is to use a moving mesh that can be adapted to focus on specific features of the model. In this paper we present and discuss two different velocity-based moving mesh methods applied to a two-phase model of avascular tumour growth formulated by Breward et al. (2002) J. Math. Biol. 45(2), 125-152. Each method has one moving node which tracks the moving boundary. The first moving mesh method uses a mesh velocity proportional to the boundary velocity. The second moving mesh method uses local conservation of volume fraction of cells (masses). Our results demonstrate that these moving mesh methods produce accurate results, offering higher resolution where desired whilst preserving the balance of fluxes and sources in the governing equations.
Resumo:
almonella enterica serovar Typhimurium is an established model organism for Gram-negative, intracellular pathogens. Owing to the rapid spread of resistance to antibiotics among this group of pathogens, new approaches to identify suitable target proteins are required. Based on the genome sequence of Salmonella Typhimurium and associated databases, a genome-scale metabolic model was constructed. Output was based on an experimental determination of the biomass of Salmonella when growing in glucose minimal medium. Linear programming was used to simulate variations in energy demand, while growing in glucose minimal medium. By grouping reactions with similar flux responses, a sub-network of 34 reactions responding to this variation was identified (the catabolic core). This network was used to identify sets of one and two reactions, that when removed from the genome-scale model interfered with energy and biomass generation. 11 such sets were found to be essential for the production of biomass precursors. Experimental investigation of 7 of these showed that knock-outs of the associated genes resulted in attenuated growth for 4 pairs of reactions, while 3 single reactions were shown to be essential for growth.